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Summary of Progress

In this report, we will concentrate on two aspects of our work for NASA: the construction

of multi-dimensional phase modulation trellis codes and a performance analysis of these

codes. Appendix A contains the final version of a paper entitled "Trellis Coded Multi-

Dimensional Phase Modulation" [1], earlier versions of which were included in our June 1988

and February 1987 reports. This paper, which will appear shortly in the IEEE Transactions

on Information Theory, now contains a complete list of all the best trellis codes for use with

phase modulation. L xMPSK signal constellations are included for M = 4, 8, and 16 and L =

1, 2, 3, and 4. Spectral efficiencies range from 1 bit/channel symbol (equivalent to rate 1/2

coded QPSK) to 3.75 bits/channel symbol (equivalent to rate 15/16 coded 16-PSK). The

parity check polynomials, rotational invariance properties, free distance, path multiplicities,

and coding gains are given for all codes. These codes are considered to be the best candidates

for implementation of a high speed decoder for satellite transmission. In our next report,

we will discuss the design of a hardware decoder for one of these codes, viz., the 16-state

3x8-PSK code with free distance 4.0 and coding gain 3.57 dB. This work is being conducted

by Mr. Steven S. Pietrobon, a Ph.D. student supported by the grant.

Appendix B contains an exhaustive simulation study of the multi-dimensional phase

modulation trellis codes. This study was motivated by the fact that coding gains quoted

for almost all codes found in the literature are in fact only asymptotic coding gains, i.e.,

the coding gain at very high SNR or very low BER. These asymptotic coding gains can be

obtained directly from a knowledge of the free distance of the code. On the other hand,

real coding gains at BER's in the range of 10 .2 - 10 -6, where these codes are most likely

to operate in a concatenated system, must be obtained by simulation. Our study goes far

beyond anything previously published on this subject and forms the basis for a paper recently

presented at the Allerton Conference on Communication, Control, and Computing [2]. This

study was conducted by Mr. Lance C. Perez, a Ph.D. student supported by the grant.

Much other work has also been continuing since our last report. We will not discuss these

in any detail here, but important results will be included in future reports. Other publications

and presentations supported by the grant are listed in the references [3-9]. Copies of these as

well as reprints of papers previously published with grant support are being sent to NASA

under separate cover.
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Abstract

In this paper, trellis coded multi-dimensional MPSK modulation is investigated. A 2L-

dimensional MPSK (LxMPSK) signal set is obtained by forming the Cartesian product of

L 2-dimensional MPSK signal sets. A systematic approach to partitioning LxMPSK signal

sets is used which is based on block coding. An encoder system approach is developed which

incorporates the design of a differential precoder, a systematic convolutional encoder, and

a signal set mapper. Trellis coded Lx4PSI(, LxSPSK, and Lx16PSK modulation schemes

are found for 1 <_ L _< 4 and a variety of code rates and decoder complexities, many of which

are fully transparent to discrete phase rotations of the signal set. The new codes achieve

asymptotic coding gains up to 5.85 (lB.

_This work was supported in part by NASA Grant NAG5-557 and OTC (Australia) R_zD Programme
No. 4.



1 Introduction

Since the publication of the paper by Ungerboeck [1], Trellis Coded Modulation (TCM) has

become a very active research area [2-13]. The basic idea of TCM is that by trellis coding

onto an expanded signal set (relative to that needed for uncoded transmission), both power

and bandwidth efficient communication can be achieved.

TCM can be classified into two basic types, the lattice type (e.g., M-PAM and M-QASK)

and the constant amplitude type .... _-- "(e.g., MPSK). Constant amplitude modulation schemes

have a lower power efficiency compared with lattice type modulation schemes but are more

suitable for certain channels, e.g., satellite channels containing nonlinear amplifiers such as

traveling wave tubes (TWT). Taylor and Chart [5] and Wilson et. al. [6] have studied the

performance of trellis coded MPSI((TC-MPSK) modulation, in particular rate 2/3 TC-SPSK

and rate 3/4 TC-16PSK, respectively, for various channel bandwidths and TWT operating

points. Their results showed that TC-MPSK modulation schemes are quite robust under

typical channel conditions.

In any TaM design, partitioning of the signal set into subsets with increasing minimum

intra-subset distances plays a central role. It defines the signal mapping used by the mod-

ulator and provides a tight bound on the minimum free Euclidean distance (dfre_) between

code sequences. For lattice-type TCM, Calderbank and Sloane [10] have made the important

observation that partitioning the signal set into subsets corresponds to partitioning a lattice

into a sublattice and its cosets. Forney [13] has developed a method, called the squaring

construction, of constructing higher-dimensional lattices from partitioned lower-dimensional

lattices.

In this paper, we investigate a class of trellis coded multi-dimensional (multi-D) MPSK

modulation schemes. Signals from a 2L-dimensional (2L-D) MPSK signal set (which we shall

denote as LxMPSK) are transmitted over a 2'D modulation channel by sending L consec-

utive signals of an MPSK signal set. Therefore, the LxMPSK signal set is the Cartesian

product of L 2-D MPSK signal sets. Trellis coded multi-D phase modulation (TC-L xMPSK)

provides us with a number of advantages that usually cannot be found with TC-MPSK: (i)

flexibility in achieving a variety of fractional information rates, (ii) codes which are partially

or totally transparent to discrete phase rotations of the signal set, (iii) suitability for use as

inner codes in a concatenated coding system [14], due to their byte oriented nature, and (iv)

higher decoder speeds resulting from the high rate codes used (rate k/(k + 1) with k up to

15 for some codes).

In Section 2, we introduce a block coding technique for partitioning Lx MPSK signal sets.

Section 3 describes how the encoder system, comprising a differential precoder, a systematic

convolutional encoder, and a multi-D signal set mapper, is obtained for the best codes found

in a systematic Code search. The signal sets are designed such that the codes can become

transparent to integer multiples of 360°/M rotations of the MPSK signal set. Also, due to

the way in which they are mathematically constructed, a signal set mapper can be easily

implemented by using basic logic gates and L bit binary adders. The systematic code search

is based on maximizing df_,, (and thus the asymptotic coding gain) as well as minimizing the

number of nearest neighbors (Nlr_) for various degrees of phase transparency. TC-L x4PSK,
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TC-Lx8PSK, and TC-Lxl6PSK codes for L = 1 to 4 are found. For TC-Lx8PSK and TC-

Lxl6PSK, asymptotic coding gains up to 5.85 dB compared to an uncoded system are

obtained. The TC-Lx4PSK codes exhibit asymptotic coding gains up to 7.8 (lB. Among

the L = 1 codes listed are some new codes which have improvements in Nit** and phase

transparency compared to codes found previously [1, 4, 6, 15]. Viterbi decoding of TC-

L xMPSK is also discussed, concentrating on maximum likelihood decoding of the parallel

transitions within a code trellis.

2 Multi-D Signal Set Partitioning

In order to describe set partitioning we will start with the familiar partitioning of the 8PSK

signal set. This is followed with an example of multi-D signal set partitioning using the

2 x 8PSK signal set. Generalizations will be gradually introduced, so that by the end of this

section the reader should become thoroughly familiar with the concepts involved.

2.1 Partitioning the 8PSK Signal Set

In partitioning the 8PSK signal set, or 1 xSPSK, we form a minimum squared subset distance

(MSSD) chain of 602 = 0.586,_i_ = 2,8_ = 4, and 52 = e_ (assuming that the average signal

energy is one). Figure 1 illustrates this partitioning, in which each subset is equally divided

into two smaller subsets such that the MSSD in each smaller subset is maximized. Partitoning

continues in this manner until we have eight subsets, each containing a single point, hence

_a2 = oo.

B

h
L

2.,

2.2 Partitioning 2x8PSK

A 2xSPSK signal set (L = 2) is illustrated in Figure 2. We use integers Yl to indicate the

first 8PSK point and Y2 for the second 8PSK point, where 91,92 E {0, 1,...,7}. Natural

mapping is used to map the integer yj into each complex valued 8PSK signal, i.e., yj H

exp[x/-L-fyjrr/4], for j = 1,2. We can also represent Yl and y2 in binary form as the vector

yj = [y], 1 0 * {0,1}, and where yj yj, forj = 1,2. That is, theyj,yj], with yj • -- 4yy + 2y I + 0

least significant bit (lsb) of yj corresponds to the right most bit and the most significant bit

(msb) to the left most bit. We will use this convention throughout the paper.

To represent a 2xSPSK signal point we form the 2 x 3 binary matrix,

Y= Y2 y22 y2X yO •

Since there are a total of six bits used to describe a signal point, the unpartitioned signal

set (indicated by f_o) has a total of 26 = 64 points. We also say that f_o is at partition level

p = 0. It can easily be seen that the MSSD at partition level p = 0 is Ag = 602,= 0.586 (we

use large A to indicate the MSSD's for L > 1 and small 8 for L = 1). The next partition (at

partition level p = 1) divides gt ° into two subsets of 32 points each. We call Pt1 the subset

that contains the all zero element (i.e., Yl = Y2 = 0). The other subset of 32 points is its

coset, labeled _21 (1). In forming these two subsets, we would like their MSSD, A_, to be



larger than Ag. If this were not possible,then we should find a partitioning that leadsto a
maximum reduction in the numberof nearestneighborswithin the smaller subsets(i.e., the
averagenumber of signal points that are distance A12away from any point). In principle,
the partitioning could be carried out in this heuristic manner.

A more efficient way of partitioning A ° is to require the column vectors of y, i.e., yi =

[g,_, yi2]T , for 0 _< i _< 2, to be codewords in a block code. This representation using block

codes is also known as multilevel coding (first described by Imai and Hirakawa [16] and later

applied to QAM by Cusack [17]). To express this mathematically, we need to introduce some

further notation. We define Cm_ as that block code which contains the column vectors y',

for 0 _< i _< 2. Thus, Cm0 contains the least significant bits of yl and Y2, Cml contains the

middle bits of yl and y2, and so on. The actual value of rn i indicates which block code is

being used. For L = 2 there are only three block codes that are of interest to us: Co, which

is the (2,2) block code with Hamming distance do - 1 (and code words [o0]T,[o1]T,[ll] T,

and [10]T), C1, which is the (2,1) block code with Hamming distance dl = 2 (and code words

[00] T and [ll]T), and C2 , which is the (2,0) block code having only one code word, [00] T

and Hamming distance d2 = ec.

Also, since Cm_ denotes a block code with 2 L-mi code words, we can write that the

, 2 rr/partition level p is the sum of all the rnis that produce the subset gtp, i.e., p = Ei=o i.

Since there are I = log 2 M bits needed for each MPSK point, p can range from 0 to IL (0 to

6 in this case). A shorthand way of writing which column vectors yi belong to which block

codes is f_(Cm_, Cm,, Cm0). Thus, we can write f_0 = a(c0, Co,Co). Since Co contains all

possible length two binary vectors, then _0 is generated.

To obtain the next partition (at level p = 1), we let _.-_1= _-'_(Co ' Co , C1). This partition

satisfies our previous comments on partitioning. That is, there are only two code words

in C1 (reducing the number of points to 32), and C1 contains the all zero code word. In

partitioning, we also require the property that all the points in _21 belong to F/° (written as

f_l C f't°). For this example, since C1 C Co, this property is satisfied. This can be stated

more generally as ft p+I C ft ', for 0 <_ p <_ [L - 1. Thus, if we have two partition levels p

andp',andp_=p+l, thenC_:_CCm, for0<i<I-1.

The partition f_l is equivalent to forcing the lsb's of yl and y2 to be either both zero or

both one. By inspection of Figure 2 we can thus see that A_2 = 2502 = 1 172. In fact, We

can use a more general expression which gives a lower bound on the MSSD. From [18,19] we

have,

A 2p>_ min(5__ld_r__, . . . , ,52_d,,.,_,,Sgd_o), (1)

where d,,,, is the Hamming distance of the code C_,, for 0 < i < I- 1. From (1), we obtain

for 2xSPSK,

Ap2 >__min(4d_2 , 2dm_, 0.586dm0). (2)

For p 0 and 1, we can see that (2) is satisfied with equality. In fact, due to the symmetry of

the 8PSK signal set, (2) is an equality for all values of p. It can be seen that in partitioning

_0 into ftl and its coset a _ (1), we could have formed fl(Co, C_, Co) or fl(C_, Co, Co)instead

of f_(C0, Co, C1). However, both these other partitions have A_ = 0.586, and are therefore

not good partitions, since we want A_ to be as large as possible. This is because d}_,, can
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be lower bounded by 2A_ for many trellis codes [1].

Ignoring for the moment how the cosets are formed, we can partition f_l into f_2 and

its coset A2(2), and so on. (The value within the brackets of the coset will be explained in

Section 2.3.) Every time we partition, we want to make A_ as large as possible. To do this

we use the following rule. The Cm, that we partition (into Cm,+l) from level p to level p+ 1

should be the i corresponding to the smallest 5=dm, at partition level p. If there are two or

more 5]dm, that have the smallest value, we choose the one with the smallest i.

Note that once Cm, has been partitioned to C_ (or CI-1 in general), then that particular

block code cannot be further partitioned (since it contains only one code word). Table 1

illustrates the partitioning of the 2xSPSK signal set. The arrows show which C_,'s are

being partitioned as p is increased. The values of A_ are also shown. Note that at p = :3,

we haveS_d_, = 4 for both i = 1 and 2. As indicated by the above rule, i = 1 is chosen

to be partitioned to form f14. Even though A42 = A_ = 4, partition level 4 is still useful for

coding since the number of nearest neighbors for _4 is less than for _qa. This will become

more apparent when the actual codes are found.

The above rule usually works quite well. For L = 3, though, some of the best partitions

do not follow this rule. Instead, we can allow a A_ to be smaller than the rule proposes, in

order to obtain a larger A_, for some p' > p, than is possible by following the rule.

2.3 Formation of Cosets

Now consider partition level p -- 1. We have shown that there are two subsets, namely fl 1

and its coset fl_(1). To obtain fl_(1), we must look at how coset codes are derived from

block codes. Recall that C1 is the (2,1) block code with Hamming distance dl = 2. The

coset of this code, C1(1), is formed by adding modulo-2 a non-zero code word that belongs

to Co, but does not belong to C, (called the generator r°), to all the code words in C1.

\Ve illustrate this with an example. Co has code words [0 0] T, [0 1]T, [1 0] T, and [1 1] T

(remember that these code words correspond to column vectors of y) and C1 has code words

[0 0] T and [1 1]T. Therefore, the generator r ° could equal [0 1]T or [1 0] T. We arbitrarily

choose r ° = [0 1]T. Thus, C_(1) = C, ® r ° = {[0 1IT,[1 0]T}. (In this paper the symbol

® will be used to denote modulo-2 (exclusive-OR) arithmetic and + to denote integer or

modulo-M, M > 2, arithmetic.) Note that if r ° = [1 0] T , the same coset vectors would

have been found, except that they would have been in a different order. Also note that the

Hamming distance between codewords in C1(1) is equal to dl.

We can also write a general expression for the cosets at partition level p = 1 as

Cx((°) = C, G (%.0, (3)

where {-0 e {0, 1}. Thus, when (0 = 0, we obtain C,(0) =- C_ and when (o = 1, we obtain

the coset of C_, C_(1). In a similar way we can divide C_ into C2 and its coset C2(2), and

C_(1) into cosets C2(1) and C2(3). Figure 3 gives an illustration of this partition. For the

second generator, there is only one choice, i.e., 71 = [1 1] T. The general expression for the

cosets at partition level p = 2 becomes

C2(2_1 + _o) _- C2 (_ _lT1 _) _0T0

5
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where C2 is the all zero vector and ('_ E {0,1}, for 0 _< m _< 1. \Ve also note that

C2CCxCC0andthatr m E Cm, but thatr m_Cm+l,for0_<m_<l.

Since we have shown how the cosets of Cm are formed, we can now show how the cosets

of f_P are formed. \Ve start with the simplest case, the single coset of f_' namely ftl(1). In

the same way as the block codes are partitioned, we must find a 2 x 3 matrix that belongs

to ft ° but does not belong to f_'. This is called the 9enerator of f_l and is labeled t °. Since

Cm0 is partitioned in going from f_o to gt', this implies that t o = [0, 0, r°], where 0 is the all

zero vector [0 0] T, i.e.,

t°=[ 000 ]001 "

An alternate notation for t o (using the symbol to), is to treat t o as if it represented two

integer values, yl and Y2- Thus, t o in integer form is t o = [01] r.

To form the coset f_l(1), all that is required is to add t o modulo-2 to all the signal points

in f_'. We write this as

_'(z °) = a I • z°t°, (5)

where z ° E {0, 1} indicates which of the two subsets is being selected. We can see that

in coset f_l(1), the lsb's of Yl and y2 are either 0 and 1 or 1 and 0, respectively. Thus this

coset has the same MSSD as fP, i.e., A_ = 1.172. Alternately, t o can be added modulo-M

(modulo-8 in this case) to the signal points in f_l. With modulo-8 arithmetic, the lsb's of yl

and Y2 are still added modulo-2, but the Isb's now produce carries which affect the middle

and most significant bits. This is denoted as

al(z °) = a _ + z°t ° (mod8). (6)

For example, a signal y = [1 3] T (where y = [y_y2] T) in f_ becomes [1 2 T] with modulo-2

addition of t o to y or I1 4] T with modulo-8 addition of t o to y. Using either type of arithmetic,

we still obtain the required partition, although the ordering of signal points within each coset

is different. In constructing_o:-tationaliy invariant trellis codes, we will find that there iS a

distinct advantage to using modulo-M arithmetic over modulo-2 arithmetic.

Continuing with the set partitioning, it should be obvious that the next generator is

t 1 = [1 1] T. From Table 1, we see that t 1 corresponds to the generator of C,. The expression

for the cosets of f_2 is

f't_(2zl+z°)=f_+zl[ 1 ]1 +z°[0] (m°d8)'l (7)

where z i C {0,1}, for 0 < i_< 1. For partition levelp= 3, we chooset 2 = [0 2] T, with

z 2 C {0, 1} used to select t 2. Continuing in the same way, we can partition the signal set

until we obtain only a single (4-D) signal point. Thus we can form the equation (using the

generators from Table 1).

y(z) = [Y']=f_G(Z)y=

w

I

i

I

m
I

u

I

I

I

_m
m
m

m

j

w

i

R



w

z

m

2

m

w

w

r_
5==

w

4 z4 0 z3 2 z2 0 zl ] + [ 0

where z = E_=o2;Z _ , with z i C {0,1}, for 0 < i _< 5, and y(z) gives the integer repre-

sentations of the two SPSK signal points. The signal set mapping given by z can now be

directly used by a convolutional encoder. Since yl and Y2 can be described in terms of z, the

signal set mapper can be implemented using simple logic circuits (exclusive-OR circuits for

modulo-2 addition and binary adders for modulo-M addition). Alternatively, since z can be

represented with only six bits, one can use a small ROM. Figure 4 illustrates two possible

signal set mappers for 2xSPSK. Figure 4(a) shows a mapper using modulo-2 arithmetic, and

Figure 4(b) shows a mapper using modulo-8 arithmetic.

In general, we can write (S) as

I = =Yl IL-1

y(z)= : = z% (9)
i=0

YL

where z = _Lo_= 2;z i, with z / e {0,1}, for 0 _< i _< In- 1. The addition in (9) is not

specified, but may be modulo-2 (using the binary matrix generators), modulo-M (using the

!nteger generators), or a combination of modulo-2 and modulo-M. Figure 5 illustrates the

partitioning of f_0 into _3 and its cosets f_3(4z 2 + 2z 1 + z °) for the 2x8PSK signal set using

modulo-8 addition.

2.4 Partitioning 3×MPSK and 4×MPSK Signal Sets

In a similar fashion to 2x8PSK, to partition L×8PSK (for L > 2) requires the partitioning

of length L > 2 block codes. We again look for partitions that have an increasing Hamming

distance. For L = 3, there are two partitions that are interesting.

The first partition has Hamming distances do = 1, d_ = 2, d_ = 2, and da = oc. These

Hamming distances correspond to the (3,3), (3,2), (3,1), and (3,0) block codes Co, C_, C_,

and C3, respectively, where C3 C C_ C C_ C Co. Table 2(a) gives the three generators,

ri °, r_, and r_2, that were chosen, along with the Hamming distances (din) and the number of

nearest neighbors (Nm) at each partition level m. The choice was not completely arbitrary,

since one of the generators must be the all ones vector (which in this case is 71°). The reason

for this will be explained in Section 3.

It is interesting to note that the generator matrix for these block codes can be formed from

the generators, in generall a generator matrix G,_ for an (L, L - m) block code Cm, for 0 <__

m < L- 1 can be formed from the generators r m to T L-1 i.e. Gm = [r rn, v m+l 7L-1] T
-- , ' , ' • • . , •

For example, for the L = 3 block codes given in Table 2(a),

 1101:,011,.: G_= 110 ,G]= Ol i 'G2
011

For the other L = 3 partition, we have do = 1,d_ = 1,d 2 = 3, and d3 = co. These

C1,C2, and Ca, where C3 C C 2 C C 2 C Co. Tabledistances correspond to block codes Co, 2 2

7



2(b) showsthe generatorsfor thesecodes. Note that T_ is the all ones vector in this case.

The advantage of this partition is that d_ = 3 is larger than d_ = 2. However, d_ = 1 is less

than d_ = 2.

The partitions of 3×8PSK that will be useful for trellis coding are given in Table 3.

Table 3(a) corresponds to the first partition where we try to maximize A_ at each partition

level. In Tables 3(b) and 3(c), the second set of block codes are used to increase A_ to 1.757

while A_ decreases to 0.586. In Table 3(c), A_ increases to 6.0 and A42 decreases to 2.0.

Note how A_ -- 6.0 is obtained in Table 3(c). At p -= 4 we have A24 = rain(4.0,2.0, oc) and

at the next partition level, A_ = min(4.0,6.0, ec) = 4.0. Now Cm_ is partitioned to give

A_ = min(8.0,6.0, eo) = 6.0. In the next level, we partition Cm, to obtain A_ = 8.0. In

Section 3, the reasons why these latter two partitions are used will be seen more clearly.

For L = 4 there is only one good way to partition length 4 block codes. Table 2@) gives

a summary of the basic parameters. Using Table 2(c), we can partition the 4x8PSK signal

set as shown in Table 4.

For Lx4PSK and L×16PSK we obtain from (1) that,

A_ >__min(4dm,, 2d._o) , (10a)

2
Ap _> min(4dma, 2din2,0.586dm_, 0.152din0), (10b)

I-1
respectively, where p = E_=o m_(I = 2 for (10a) and I = 4 for (10b)). In a similar fashion

to Lx8PSK, the signal set partitions can be obtained for L = 2 to 4. Tables 5, 6, and 7 give

a summary of the partitions for Lx4PSK, Lx8PSK, and Lx 16PSK, respectively.
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2.5 Larger Dimensional MPSK Signal Sets and the Squaring

Construction

One way to obtain larger dimensional MPSK signal sets is to take an LxMPSK signal set

partition (with its corresponding MSSD's relabeled as 5_, for 0 < i < [L) and form a 2LL'

dimensional MPSK signal set which we label as L' x Lx MPSK. Thus if we have a 2xSPSK

signal set, the MSSD's A2p, O <_ p <_ 6L', for L _ x 2x 8PSK are given by

2
Ap >_ min(8dm_, 4din,, 4din3,2din2,1.172d_, 0.586dmo), (11)

where the dm_'s are the Hamming distances of (L', L'-mi) block codes. If L' = 2 we can form

the 2x2x8PSK signal set, which is equivalent to the 4xSPSK signal set. Table 8 illustrates

this partitioning. Note that the MSSD's obtained are exactly the same as those found with

the 4x8PSK partitioning given in Table 4. Figure 6 shows a block diagram of a signal set

mapper for the partition of 2x2xSPSK. The function T_ corresponds to the mapping given

by the generators in Table 8 and T2 to the generators in Table 4.

For L t = 2, the above method of obtaining larger dimensional MPSK is essentially equiv-

alent to the squaring or two-construction described by Forney [13]. The cubing or three-

construction corresponds to L _ = 3. One can continue squaring or cubing various multi-D

signal sets in an iterative fashion to obtain many larger dimensional signal sets. If we desire

an LxMPSK signal set, all that is required is to factor L to determine which constructions

are needed. For example, if L = 24, we could factor this into a 2 x 2 x 2 x 3xSPSK signal set.
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If L is a prime number, then the appropriate length L block codes and their corresponding

generators must be found.

Table 9 gives the generators for L = 5 and 7. Also given are the Hamming distances and

the number of nearest neighbors for each length L block code. Note that there are three

different partitions for L = 5 and four different partitions for L = 7. This seems to suggest

that the number of useful partitions increases by one for each successive prime number.

Thus, L = 11 is expected to have five useful partitions, and so on. These partitions were

constructed by hand and probably represent the practical limit of hand constructions. For

L = 11 and above, an algorithmic or mathematical method is required. In forming each

partition, we have tried to maximize the Hamming distance and minimize the number of

nearest neighbors. For example, the type IV partition maximizes the Hamming distance

and minimizes the number of nearest neighbors for the (7,4) block code while the type III

partition maximizes the Hamming distance and minimizes the number of nearest neighbors

for the (7,3) and (7,2) block codes.

For larger dimensions, these methods may produce block codes which do not have the

largest possible minimum distance. For example, the largest Hamming distance that can be

obtained for the (24,12) coset code is six. However, the (24,12) Golay code has a Hamming

distance of eight. For L = 2, 3, and 4, the block codes are relatively simple. Thus, we are

fairly certain that the best partitions for these LxMPSK signal sets have been found.

3 Trellis Coded Multi-D MPSK Design

This section describes how convolutional codes are constructed for the L x MPSK signal sets

described previously. We first show how to construct signal sets which have good phase

rotation properties. Following this, a method used to find good convolutional codes based

on the parity check equations is presented.

w
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w

w

3.1 Construction of Signal Sets

Equation (9) can be used to describe a signal point in an LxMPSK signal set. The number

of bits z i needed to describe each signal point is IL. If the lsb is used for coding, we can

form a rate (IL - 1)/IL code. A more convenient measure of rate is to use the average

number of information bits transmitted during each 2-D signal period (T). This is called the

effective rate of the code, R_ff = (IL- 1)/L (bit/T). The unit bit/s/Hz can also be used

(for the actual bandwidth efficiency), but this assumes that perfect Nyquist filtering is used

in the receive and transmit filters. Since this is not the case in many practical systems, we

make a distinction between the units bit/T and bit/s/Hz.

Other rates can be achieved by setting the q lsb's of the mapping to 0. We do this to

insure that the MSSD's are as large as possible, so that the best codes can be found. In this

case (9) can be rewritten as

,k,yq(z) = " = z J-at j,

YL J=q

(12)



for 0 _< z _< 21L-q-l- 1,0 _< q < L- 1, and where yq(z) represents a point z in an

LxMPSK signal set such that the first q bits of (9) are 0. As before, we do not restrict the

type of addition that is used. We now let z = [zZn-q-1,...,z 1,z°], where z is the binary

representation of z, and the lsb of z is always the coding bit. This notation insures that the

parity check equations of a convolutional code can always be expressed in terms of the lsb's

of z without depending on the type of signal set used or its partitioning. From (12), codes

with effective rates R_:I = (IL - q - 1)/L can be formed. An upper limit of q = L - 1

is set because for q >_ L the signal set is partitioned such that din0 = co, i.e., an M/2 j

-PSK, for j > 1, signal set is being used (one exception is the 4x8PSK signal set (Table 4)

where din0 = 4 for q = L). The MSSD's range from A_ to A_L and the uncoded minimum
2

squared Euclidean distance (MSED) is Aq+l, since uncoded transmission uses only half as

many signals as coded transmission.

Example 3.1

\Ve can form a rate 4/5 code with an effective rate of 2.0 bit/T from a 2x8PSK (L =

2, I = 3) signal set with q = 1. Then

Yl(Z)=Z4[ 4]4 +z3[ 014 +~'2[ 2]2 +zl[ 012 +z°[1] (m°d8)'l

The uncoded MSED is A_ = 2.0, which is the same as uncoded 4PSK.

3.2 Effect of a 360°/M Phase Rotation on a Multi-D MPSK Sig-
nal Set

Using modulo-M arithmetic in (12), multi-D signal sets can be constructed such that there

are at most I bits in z affected by a signal set rotation of _ _ 360°/M. For 4PSK, 8PSK,

and 16PSK, this corresponds to rotations of 90°,45 °, and 22.5 °, respectively. Initially, we

consider all possible mapped bits, i.e., q = 0.

Consider that a 1 xMPSK signal set has been rotated by kg. Since we are using natural

mapping, the integer representation of the rotated signal point is y_ = y + 1 (mod M), where

y is the integer representation of the signal point before rotation. If y is in binary notation,

then

yO = y0 • 1 = yO (13a)

......... yrl =::=: yl @ y0, = (13b)

y_ = y2 ®. y0.y_, (13c)

If there are I = log 2 M bits in a signal set, then we see from (13) that all I bits are

affected: by a phase r0_tation Of fly:

Consider the 2x8PSK signal set, with the mapping given by (8). The phase rotation

equations of this mapping can be determined as follows. From (8), the signal outputs can

be written in terms of z as

y2 1 +(4za+2z2+z°) 01 (mod8). (14)
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be written in terms of z as

Y2 1 +(4z4+2z2+z°) 01 (mod8). (14)

After a 45 ° phase rotation we have yj,_ = yj + l(mod 8), for j = 1, 2. From (14), we can

form the following phase rotation equations,

[ ] [1]Yl,_ =(4zS+2z3+zl+l) 1 +(4z4+2z2+z o) 0 (modS).
Y2,_ 1

Note that a 1 is added to the term whose coset is [1 1]T. Hence this term "absorbs" the

effect of the phase rotation, leaving the remaining term unaffected. As can be seen, bits

z 5, z 3, and z 1 are affected in a manner similar to y2, yl and y0 in (13), and bits z 4, z 2, and

z ° are unaffected by the phase rotation. Thus, we can form the phase rotation equations

0 Z 0 2 Z 2 4
Zr = ' Zr = ' Zr = Z4' (15)

_,I ___ Z 1 (_) 1 _3 __ Z 3 5 Z 5 _1) Z1 Z3_;,t -- (_ z l ' Z r _-
_r '

If the signal set had been constructed using modulo-2 addition (instead of modulo-8), only

z ° would have remained unchanged by a 45 ° phase rotation. Using general notation, we can

express (14) as

Yl

YL

+ (mod M), (16)

1

(21-1Z pI-1 -Jr "'" 2V 2Z pl -t- Z pO) :

1

2I-1 {gl-1} +''" Jr- 2 {gl} -4- {go}

where pj, for 0 < j <_ I - 1, corresponds to those partition levels where tP equals the vector

[2J,2J,... ,2J] T. The term g, for 0 < j < I- 1, corresponds to those remaining terms that

have at least one (but not all) component in t p with value 2 j. For (14) we would have

Po = 1,pl = 3, and p2 = 5. These values of pj are given for all the signal set partitions

shown in Tables 5-7. We can now write the phase rotation equations as

z rp°=z p°®l,,.r~pl--z p'Oz p°,z_=z _z p°.z p',.,, (17)

and for all other partition levels, z_ = z p.

For L = 2, there is only one term in each gj. However, for L > 3, there are two or more

terms in each gj. Since the terms in gj do not contribute to the phase rotational properties

of the signal mapping, these terms can be added modulo-2 before being added modulo-M to

the other terms. This is best illustrated with an example. For the 3x8PSK (I) signal set in

Table 3(a), we have the following mapping equation:

[yl][0][4][41[0][2]Y2 = z s 4 +z T 4 +z a 4 +z 5 2 +z 4 2

Y3 4 0 4 2 0

w
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+ [2][0]Zll[1]z 3 2 + z 2 1 + z 1 1 + z ° 1

2 1 0 1

[1]= (4z 6+2z 3+z °) 1 +4 z s 1 ®z 7

1 1

/[°] [1]}{I°1+ 2 z 5 1 G z 4 1 + z _ 1 • z 1

1 0 1

[z,]= (4z 6+2z a+z °) 1 +4 z s(gz T +2
1 z s

1

[z l[z s ® z 4 +

Z 5
zl]Z 2 _ Z 1 (mod 8).
Z 2

The reason for this combination of modulo-2 and modulo-M arithmetic is that it reduces

the number of logic circuits required in a signal set mapper. For small IL, it may be

simpler to use ROM's for signal set mapping, but for large IL this dual addition becomes

preferable. Figure 7 gives a block diagram of the three 3xSPSK signal set mappers and

Figure 8 illustrates the mapper for 4x8PSK. This combination of modulo-2 and modulo-M

addition has no effect on the MSSD's (at least for L _%<4). In a similar manner, we can also

obtain the signal set mappers for Lx4PSK and Lxl6PSK.

Due to the phase rotational properties and simplified hardware that the combined modulo-

2 and modulo-M mapping allows, these are the signal sets that are used to find all the trellis

codes in this paper.

We have shown that for q = 0, the bits that are affected by a phase rotation of • are z p_,

for 0 _< j _< I- 1. For q > 0 the bits that are affected are z pj-q, for 0 _< j _< I - 1. However,

depending on the signal set, pj - q for some j may be less than zero. If this is true, the

minimum phase transparency is 2d'qJ, where d' is the number of terms pj - q that are less

than zero, and the number of bits that are affected by a 2_'_ phase rotation is s _ = I - d'.

For example, the 3xSPSK signal set in Table 3(a) has P0 = 0,pl = 3, and p2 = 6. Thus

if q = 1, then p0 - q = -1, which is less than zero, implying that d' = 1, and thus only

s _ = I - d _ = 2 bits are affected by a 2_ = 90 ° phase rotation. (A phase rotation of • = 45 °

of this signal set produces its coset.)

Fortunately, for the codes and signal sets considered in this paper, the above complication

does not occur. This is partly due to the fact that for many signal sets with q = 0, the first

L - 1 lsb's are not affected by a phase rotation of O. Since we consider only signal sets with

0 _< q < L - 1, d _ = 0 in these cases. For those signal sets where this is not true (e.g., in some

3xMPSK signal sets), it has been found that the convolutional codes produced are inferior

(in either dsT_e or number of nearest neighbors) to an alternative signal set with d' = 0.

When a Signal set is combined with a convolutional enc0der we must consider the effect

of rotating coded sequences. A similar result to above is obtained so that, depending on the

code and the signal set, the signal set can be rotated in multiples of 2e_ and still produce

valid code sequences (where d defines the degree of transparency). The actual determination

of d is described in Section 3.4. The number of bits that are affected by a 2cO phase rotation

iss= I-d.
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For 0 _< q __<L- 1, the actual bits that are affected by a phase rotation of • are z b_, where

bj = pj - q, for 0 _< j <__I - 1. More generally, the bits that are affected by a phase rotation

of 2d_ are z c_, where cj = Pj+d -- q, for 0 _< j _< s -- i. These two separate notations (bj and

cj) are used because the determination of d depends on bj, as will be shown in Section 3.4.

3.3 The General Encoder System

From the above information we can now construct a suitable encoder system, as illustrated

in Figure 9. The general encoder system consists of five sections. These sections are the

differential precoder, the binary convolutional encoder, the multi-D signal set mapper, the

parallel to serial converter, and the 2-D signal set mapper. The convolutional encoder is

assumed to be in feedback systematic form, as in [1]. That is, zJ(D) = xJ(D) for 1 < j _< k,

where D is the delay operator and polynomial notation is used. The parity sequence, z°(D),

will be some function of itself and the xJ(D), for 1 _< j < k. The parity check equation

of an encoder describes the relationship in time of the encoded bit streams. It is a very

useful and efficient means of describing liigh rate convolutional codes, since it represents the

input/output encoder relationships in a single equation. For an R = k/(k + 1) code, the

parity check equation is

H_(D)zf'(D) @... @ HI(D)zl(D) ® H°(D)zO(D) = 0(D), (18)

where k, 1 _< _: _< k, is the number of input sequences that are checked by the encoder,

Hi(D), for 0 _< j _< k', is the parity check polynomial of zJ(D), and 0(D) is the all zero

sequence.

Since the encoder is systematic, the differential precoder codes only those bits which are

affected by a phase rotation. The input bits into the encoder which are precoded are denoted

w _°, we1,..., w c'-1 . If Co = 0, we replace w ° (which does not exist) by z °, as shown in Figure

9 by the dashed line (a different precoder must then be used). For example, an encoder for a

rate 8/9 code which uses the 3xSPSK (I) signal set given in Table 3(a) may (depending on

the phase transparency) need this modification. This is because this signal set has b0 = 0,

and thus if the code has d = 0, then z ° will need to be precoded. Figure l0 illustrates the

two types of precoders. Note that the storage elements have a delay of LT. Figure 10(a)

illustrates the precoder with co > 0, where there are s inputs that are precoded. The basic

component of the precoder is the modulo-2 s adder. For most codes this is the precoder to

be used. For the bits that are not precoded, x i = w', for i 7_ cj.

Figure 10(b) shows the other case, where Co = 0 and s - 1 input bits are precoded (the

other precoded bit is z°). The adder circuit for this case is different from Figure 10(a), i.e.,

it is not a modulo-2 s adder. The Appendix gives the equations for the differential encoder

and decoder (for both cases) and an explanation of how these circuits work.

At this point, we summarize the notation and indicate the limits on the parameters used

in the search for good codes. For a rate (IL-q- 1)/(IL- q) code,

I = no. of bits in each 2-D signal (2 _< I _< 4),

M = 21 = no. of signal points in each 2-D signal set,

13



L = no. of 2-D signal sets(1 < L < 4),

p = partition level of signal set (0 < p < IL),

q = the partition level p where mapping begins (0 _< q < L - 1),

z = signal set mapping parameter (0 < z < 2 p-q - 1),

k= IL q 1 =no. of input bits toencoder,

k" = no. of bits checked by encoder (1 < k < k),

= 360°/M = minimum phase transparency with q = 0,

pj = the bits z pj affected by a • phase rotation with q = 0,

d = degree of phase transparency (2eq I, for 0 < d _< I),

s = I-d = no. of bits in z affected by a 2aO phase rotation,

cj = Pj+d -- q = the bits z c_ affected by a 2dff2 phase rotation.

g

I

b

i
I

There are two types of systematic convolutional encoders that can be constructed. Before

proceeding with the description of these encoders, we return to the parity check equation

given in (18). As in [1], we define the constraint length u to be the maximum degree of all

the parity check polynomials HJ(D), for 0 < j < k. For _ < j < k, Hi(D) = 0, since the

bits corresponding to these polynomials are not checked by the encoder. The parity check

polynomials are of the form

I

R

U

= _J rv,-a .. h{D hJo, 1 <HI(D) 0®,o___ _. @ ® j _< k-, (19a)

= t'° r)_-I hOD 1. (19b)H°(D) D" _ °_u--l_ (_''" (_ @

iI

If _: < u, we let h j = 0, for 1 _< j _< ['. This insures that the squared Euclidean distance

(SED) between paths in a trellis leaving or entering a state is at least 2Aq+ 1. Thus all codes

in this class have a MSED between all possible non-parallel coded sequences of at least

.Aq+1.92 The parallel transitions provide an upper bound on the d_,r,_ of a code. A theoretical

justification for constructing codes in this manner can be found in [20] where it is shown,

using random coding arguments, that these codes have a large free MSED on the average.

A minimal systematic encoder can be implemented from (19), since ho° = 1 [1]. The

encoding equations are

zJ(D) = zJ(D),I <_j < k, (20a)

U

I

g

z°(D)=Hk(D)x_'(D)o...OHI(D)xl(D)O(H°(D)®I)z°(D). (20b)

An encoder implementation using (20) is shown in Figure 11.

For all codes with v = 1 and for some codes with u > 1,[" = u. For these codes we

cannot restrict h j, for 1 < j < ['. This is because _: checked bits require at least k" terms

in HJ(D), for 1 < j < k', that are variable. If there are not enough variables, then there

will be some non-zero x _ = [x_',... ,x2, x _] such that _=l HJ(D) xj = 0 (mod 2). That is,

there will be more than 2 k-_ parallel transitions between states in the trellis. To avoid this

problem, when k" = u, we use (19) without any restrictons. In this case, the MSED between
2

all possible non-parallel coded sequences is at least A_ + Aq+l, since the MSED between

paths leaving a state is A_ (since h_ e {0, 1}, for 1 < j <_ k) and between paths entering a

2 (sinceh j=0,for 1 <j<k).state is Aq+ 1 _ _
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signal set mapper takes the I bits for each 2-D signal point and produces the required real

and imaginary (or amplitude and phase) components for a modulator.

Example 3.2

In this example, we describe how to implement a particular code. The code is used with

a 3x8PSK signal set. Thus L = 3 and I = 3. We also choose q = 1, so that a 2.33 bit/T

(rate 7/8) code is formed. The partition that is used is given in Table 3(b), from which we

obtain P0 = 2,pl = 3, and p2 = 6. The code is 90 ° transparent, so that d = 1 and s = 2.

Therefore Co = pl - q = 2, and Cl = P2 - q = 5. Thus bits w 2 and w s are precoded using

a modulo-4 adder. Since co > 0, the precoder given in Figure 10(a) is used. For this code,

= 2 and the parity check polynomials are H°(D) = D 4 ® D 2 ® D • 1,Hi(D) = D, and

H2(D) = D 3 ® D 2. Excluding the parallel to serial converter and the 2-D signal mapper,

the encoder is shown in Figure 12. This code has 16 states (u = 4). Note that the multi-D

signal set mapper does not correspond exactly to Figure 7(b), since q = 1.

3.4 Convolutional Encoder Effects on Transparency

The convolutional encoder can affect the total transparency of the system. The method

used to determine transparency is to examine the parity check equation and the bits that

are affected by a phase rotation. A code is transparent if its parity check equation, after

substituting zj(D) with zJ(D), for 0 < j <_ k (the rotated sequences), remains the same.

There are normally at most I bits that are affected by a phase rotation, z_,...,z b_-l,

bj -= pj - q, for 0 _< j <_ I - 1. That is,

/ z_ = zb°O1,

bl z b_ • z b°
Z r _-

zbr 2 = Z b2 0. Z b° " Z bl ,

(21a)

(21b)

(21c)

Assume that the largest value of bj < k is b0. This implies that only one term in the parity

check equation is affected by a phase rotation. The other bits have no effect since they are

not checked by the encoder, i.e., bj > _: for 1 _< j _< I- 1. The parity check equation after a

phase rotation of • then becomes

Hk(D)z_'(D) @... @ Hb°(D)[zb°(D) @ I(D)] G'" ® H°(D)z °(D) = O(D),

H_'(D)zk(D)®...® HbO(D)zbO(D)o...® H°(D)z°(D)= E[Hb°(D)](D), (22)

where E[Hb°(D)] is the modulo-2 number of non-zero terms in Hb°(D) and I(D) = Ecff=_oo D j

is the all one sequence (i.e., E[H_°(D)](D) = Hb°(D)I(D)). Thus if there is an even number

of terms in Hb°(D), (22) is the same as (18). That is, the code is transparent to integer

multiples of • phase rotations of the signal set. However, if there is an odd number of terms

in Hb°(D), then E[Hb°(D)] = 1 and the coset of the convolutional code is produced. Even

though the two equations are closely related, the codes are quite different and a decoder is

not able to produce correctly decoded data from a • phase rotation of the signal set.

w
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of terms in HV°(D), (22) is the same as (18). That is, the code is transparent to integer

multiples of • phase rotations of the signal set. However, if there is an odd number of terms

in Itb°(D), then E[Itb°(D)] = 1 and the coset of the convolutional code is produced. Even

though the two equations are closely related, the codes are quite different and a decoder is

not able to produce correctly decoded data from a • phase rotation of the signal set.

Now assume that the first two terms are affected by a phase rotation, i.e., the largest

value of bj <_ k is bl. The terms in the parity check polynomial Hb°(D)zb°(D)OH b2(D)z b' (D)

now become

[Hb°(D) @ Hbl(D)]zb°(D) ® Hb'(D)zbl(D) • E[Hb°(D)](D).

In this case the parity check equation is different after a phase rotation (even if E[Hb°(D)] =

0). This means that the code is not transparent to a q_ phase rotation, but it could be

transparent to 2_ or 4_ phase rotations. This is because the phase rotation equations

reduce to

ZrbO __ zbo, -bd-1 zbd-1

zrba ---- Z ba @ 1, z_a+_ = Z ba+l _ Z ha, ...

for a 2d_ phase rotation, where d = 1 or 2. If there is an even number of terms in H bl (D),

then d = 1. This is because an even number of terms in H bl (D) cancels the effect on z b_(D)

when the signal set is rotated by 2_. That is, the code is transparent to integer multiples of

2_ phase rotations, but not to multiples of _. If there is an odd number of terms in H b' (D),

this cancellation effect does not occur, implying that d = 2 and the phase transparency is

4_.

In general, if the largest value of bj < k is b/, then d = f + E[HbJ(D)]. We can then

determine those bits z c_ which are affected by a 2d_ phase rotation, i.e., cj = bj+4 = pj+d-q,

for 0 _< j _< s - 1, where s = I- d.

Example 3.3

For the code given in Example 3.2, k = 2,[ = 3, and q = 1. Thus b0 = 1, hi = 2, and

b2 = 5. Since the largest value of bj _< 2 is bl, then f = 1. Therefore d = 1 + E[H b_(D)] =

1 + E[D a • D 2] = 1. Thus the code is 90 ° transparent, and co = 2 and cI = 5.

3.5 Systematic Search for Good Small Constraint Length Codes

An approximate lower bound for the symbol error probability [1] of a multi-D code is given

by

P_(e) > IV'__ -L Q (I d}_R_'' Eb )2No ' (23)

where Eb/NO is the energy per information bit to single sided noise density ratio and Q(.) is

the complementary error function. In (23), the division by L normalizes the average number

of errors per n-mlti-D signal to that of:a 2-D signal set.
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For each multi-D signal set considered, there are a number of code rates which can be

achieved. As u is increased, a comprehensive code search becomes time consuming due to

the greater complexity of each code. \Ve have thus limited our search to u + k" _< 10. (The

number of checked bits k" also affects the complexity of the code search.) As indicated by

d 2(23), the criteria used to find the best codes are the free MSED (fr**) and the number of

nearest neighbors (Nfr,,). We have also included the code transparency (d) as a criteria in

the code serach. The code search algorithm that was implemented is similar to that in [1],

but with a number of differences which include the extra criteria mentioned above.

The actual code search involves using a rate _/(k + 1) code. Thus two separate notations

are used to distinguish the rate k/(k + 1) encoder and the simplified rate k/(k + 1) encoder.

For the rate k/(k + 1) encoder, we have x,_ = [x_,...,x_l (the input to the encoder) and
1z,, = [.,,,-k..., z,_,l z °] (the mapped bits or encoder output) at time n. Also, e,_ = [e_, ..., e,,,

' at time n, i.e., e,_ = z,_®z'_.is the modulo-2 difference between two encoder outputs z,_ and z n

that give the same e,,. For the rateNote that there are 2 TM combinations of z,_ and z,_

],:/(k + 1) code, we denote reduced versions of x,_,z,, and e,, as _,_ = [x{,...,x_],_,_ =
I 0 1[z_,..., z,,z,_ l, and fi,_ = [e,_,..., en, e°], respectively.

2
In order to find df_ for a particular code, the squared Euclidean weights (SEW) w2(en)

are used. As defined in [1], w2(e,,) is the MSED between all combinations of a(z,,) and _(z')

such that e,_ = z,_ G zn' and a(zn) is the actual LxMPSK signal point. This can be defined

as

w2(e,_) = rain d2[a(z,_),a(z,_ _3 en)], (24)
all zn

where d2[a(z,_), a(z')] is the SED between a(z,_) and a(z',_). One can then use the all zero
2

path as a reference to find df_,, in a code search, i.e.,

d}_ = min _ w:(e,,), (25)
n

where the minimization is over all allowable code sequences with the exception of the all-
2

zero sequence. We can use (25) to find df_¢_ provided that the minimization of (24) does not
0

depend on z,, as shown by Ungerboeck [1].

0 for 1 xMPSK signal sets, it can-Although the minimization of (24) does not depend on z n

not be assumed that this also applies to LxMPSK for L >_ 2. By expressing d2[a(z,,), a(z,_ ®

e,_)] directly in terms of z,_ and e,_, it can be shown that 3x4PSK (I), 3xSPSK (I and II),

0 This implies that (25) becomes a lower boundand 3 x 16PSK (I, II, and III) all depend on z,,.

in these cases. However, due to the large number of parallel transitions for these codes, we

2 (and N/_) using a slightly modified version of (25).can still determine d/_**

Since there are 2 k+l values of en, there are a total of 22k+2 computations required to find

all the values of w2(en). For example, a rate 11/12 code with 4xSPSK modulation requires

0 0 (or 1) and minimizingnearly 17 million computations. This can be reduced by letting z,_ =

(24) over all z,_ = [z_, ... ,,.,,_ 0]. This reduces the number of computations to 22k+_. In fact,

it is possible to even further decrease the number of computations. Using some difficult

algebraic manipulations, it can be shown that the L output bits z_ corresponding to cosets

t p with some components equal to 2 f-1 can all be set to zero. For example, the 4x8PSK

r 9 lo and 1i all set to 0 when minimizing (24).signal set with q = 0 can have bits zn, z,_, z_ , z_
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This is due in part to the MPSK signalsbeing antipodal for thesevalues. Thus the total
numberof computations canbe reducedto 22k-c+l.

2In order to reducethe time neededto find dfr,e, we note that the trellis is equivalent to a

rate k/(k+ 1) code with 2 k-_, parallel transitions. Also, there are 2 i+a different sets of parallel

transitions. If the minimum SEW is found for each of these sets of parallel transitions, the

code search is greatly simplified, since the search for a rate _:/(_ + 1) code is all that is needed

and k" is usually small. Thus, the SEW's required for a rate k'/(_ + 1) code search are

w2(_n) = min w2(en), (26)

where the minimization is over all [ek,...,_,_i+llJ. We define the free MSED of this rate

k"/ (k" + 1 ) code as

dT}re_ = min _ w2(_n), (27)
n

where the minimization is over all allowable code sequences (_(D)) defined by

_(D) = _ID ® _2D20, ''' G eN DN,

for el, eN ¢ 0, and N _> 2. The code sequences of length N = 1 are the parallel transitions,
"2

where the MSED is the MSSD of the parallel transitions. A code might have d/_,, larger than
2

the MSSD of the parallel transitions, implying that df_, occurs along the parallel transitions.

With k checked bits and a rate k/(_:+ 1) code, the MSSD of the parallel transitions is A 2 -
q+k+l"

2
Thus we can express df_, as

d}r_ min(@_, 2= (._,8)

The best value of _ can be determined from the free MSED of the best code for the

previous value of u. The search starts with u = 1 and k = 1, and we find the code with
2 2the best df_ and A_. We then increase u by one and determine _ as follows. If d/_ for

_2
the previous best code was d/_e , then _ remains the same. This is because the limit of the

parallel transitions (A_+k+l) has not yet been reached and the trellis connectivity needs to
2 2

be reduced in order to increase d/_,, or reduce N/_,_. If d/r,, for the previous best code was
2

A 2 - then _ is increased by one from the previous value; otherwise, dirge and N/_,e would
q+k+l'

"2 - A 2 - for the previous best code, then k can remain the sameremain the same. If d1_ q+k+l

or increase by one. Both values of k should be tried in order to find the best code. The

best code is then found for this value of u and k, and the above process is repeated for each

increasing value of v.

As can be seen from (24), there may be some values of e,_ and z,_ for which w2(en) <

d_[a(z,)i:a(zn ® e,_)].::_}Te ' nUmber:of nearesi neigh'bOrs for e,_ (denOted m(e:i) ]s:_efined

as the average number of times that W2(en) equals d2[a(z,),a(z, • e,_)]. If w'(e,_) equals

d2[a(z_),a(z, ® e,_)] for all values of z,_, then m(en)= 1. For example, in naturally mapped

8PSK it is found that for e, = [0 1 I] and [1 1 1],d2[a(z,),a(zn @ e,_)] = 0.586 for four

values of z,_ and 3.414 for the other four values of z,. Thus m(e,_) = 0.5 for er, = [0 1 1]

and [1 1 1]. For all other values of e,_, it can be shown that re(e,,) = 1. Zehavi and Wolf
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[21] give a general approach to determining the full code distance spectrum, whereas we are

only interested in the number of nearest neighbors.

\,Ve can state this generally as follows. Let the number of bits in z,_ that are varied to

find w_(e,) be b. Then

m(e,) = _ u (w2(en) - d2[a(z,_),a(zn ® e=)]) 2 -b, (29)

where u(.) is the unit step function and the summation is over all the bits in z_ that are

varied to find w2(e=). Normally b = k + 1, but this can be reduced to b = k - L for the

reasons mentioned previously.

For the simplified rate k/(k" + 1) code, m(6,) is the sum of all the m(e,)'s for which

w2(6=) = w2(e,), i.e.,

= - (30)

where the summation is over all [e,_,..., e_+_]. We can think of m(_) as the total average

number of nearest neighbors along each set of parallel transitions.

The number of nearest neighbors for the MSSD A 2 - is
q+k+l

= u /k sNa E (q+i+l-w2(e,_))rn(en), (31)

where the summation is over all e,_ = [e_, • • •, _fi:+a, 0, ... ,0]. The number of nearest neighbors
~2

for paths with SED df_, can be calculated using m(fi,_) as follows:

A Nc,

N¢ oo= 1-I (32)
c_-----1n=l

i

where N_ is the length of a path (x that has a SED of @_ and A is the number of paths
~2 2

that have a SED of di_. If df_ occurs along the parallel transitions, NI_ = Nzx, and

2 d}_ andwe define the next nearest free SED and number of nearest neighbors as dnext =
~ 2

Nn_,:t = N]_, respectively. (Note that d,_ t and N,_,t may not be the true next nearest

paths, since there may be some closer paths occuring along the parallel transitions.) When

there are several codes that have the same free MSED and number of nearest neighbors, the
2

"next nearest" values are used in code selection. When df,_ occurs along paths with SED

d}_,,, Nf_, = fi{l_,_" The next nearest values in this case are not given in the code tables. If

d}_ = A 2 - then Nf_, = NA + Nf_,.q+k+l'

Example 3.4

In Example 3.2 we have a k" = 2, q = 1, rate 7/8 (2.33 bit/T) code with a 3x8PSK (II)

signal set. After determining the mapping of the signal set, (24) was used to find the SEW's

for each signal point. Equation (26) determines the w2(fi_)'s that were used to find the best

2 = £x2 - = A42 = 4.0. Using (31) we determined thatrate 2/3 codes. For these codes df_ q+k+x

N/_ is 15 (after normalizing, there are only 5 paths per 2-D symbol). In the code search
2 i'2

for the best rate 2/3 codes, there were many codes which had d,_ex t = df_ = 4.343. Thus

(32) was used to determine Nn_:t for each best code. Table 10 gives the values of w2(_n) and
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rn(_) for each _ that were used in the code search. The best code with a transparency of

90 ° was found to have N,_e_t = 24.

In order to reduce the number of codes that must be tested in our code search algorithm,

rejection rules were used. As in Rule 1 of [1], time reversal of the parity check polynomials

was used to reject codes. Even though w2(?_,_) and rn(_,_) are used to find the best codes,

Rule 2 in [1] can still be exploited, provided that w2(6,) = Ar(a.)+¢,2 where r(6,) is the

number of trailing zero's in 6,. When this is not true, it may still be possible to find some

combinations of the parity check polynomials that can be rejected (this was also implemented

in our code search). Rule 3 in [1] was also used to eliminate codes.

In the code search, a rate k/(k + 1) code is searched for a particular v. Before finding

dl}ree, the code search program checks to make sure that the code only produces sequences

with length N :> 2. If for some input 5:,_ _¢ 0, the inputs to the systematic encoder are all

zero, the state of the encoder goes from one state to the next as if a zero input had occurred.

Thus parallel transitions will occur in the rate k/(k + 1) code, which should not have parallel

transitions. Therefore, in the code search, codes at level i (1 < i < k) were rejected if for

some Ix', x 1] ¢ O, i• ..., Ej=l xJHJ(D) (mod 2) = 0(D).

Two programs were used in the code search, one for codes with u > k and the other

for codes with u = _:. For specific values of I, L, and q, yq(z), for 0 ___ Z <__2 IL-q -- 1, was

generated using the coset representatives t p, for 0 < p <_ IL - 1, that are given in Tables 5,

6, and 7. The squared Euclidean weights w2(e,_) were then calculated using (24) for all en.

Since the Value of J¢ can change with each u, w2(_,_) and m(en) were computed, if necessary,

as the program went from the smallest to the largest v:

The code search used the various rejection rules before the time consuming tasks of

-2 (using the bi-directional search algorithm [22]) and N/_ (using a techniquefinding d/_

based on the Viterbi algorithm). The rejection rules were organized so that the best codes

for each of the two possible phase transparancies were found. The code search found those

codes which had the largest free distance (for a particular transparency). If a code was found

to have its free MSED equal to or greater than the previous best code, Nf_e, was determined

"2 l_rl_ had improved over the previous best code.and this code was listed if either its df_ or

The octal code generators were then listed along with their df_ee,-2 ]VI_, and phase trans-

parency d. A small list of codes was produced (for each code search) from which the best

codes could be chosen. Every time that k is increased by one in the code search (which is

done automatically), the program determines and lists A 2 - and NA for use in the code
q+k+l

tables.

The asymptotic coding gain 3' of each code compared to the uncoded case, as shown in

the code tables, is

V 10 2 2= log,o(dfr,,/d,, ) (dB), (33)

where d_ is the smallest MSSD of an equivalent uncoded 2-D or multi-D scheme. In nearly

2 For codes with a non-integer Rely, no equivalent l xMPSK schemeall cases, d_ = Aq+ 1.

exists which has the same R_]/, and so the equivalent uncoded multi-D signal set is used

instead. For the 4x8PSK signal set with q = 3, RCj] = 2 bit/T. Thus, a natural comparison
2

would be against uncoded 4PSK, which has d_ = 2. (In this case, Aq+ 1 = 2.343, which is
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inconsistent with other codes that also have R_ff = 2 bit/T.) The asymptotic coding gains

compared to uncoded (M/2)-PSK are found by adding to 7 the appropriate correction factor

"[_,!r/2= lOlOglo _(I-- i) _ 2]

(34)

as shown in the code tables. The transparency (in degrees) is also given for each code. The

parity check polynomials are expressed in octal notation in the code tables, e.g., H°(D) =

D 6 + D 4 -t- D 2 + D + 1 _ (001 010 111)2 = (127)s.

In Tables 11, 15, and 19, codes for TC-lx4PSK (rate i/2 4PSK), TC-lx8PSK (rate

2/3 8PSK), and TC-lx 16PSK (rate 3/4 16PSK), respectively, are presented. These tables

give the best code for each phase transparency, which (to the best of our knowledge) have

not been previously published. The best codes, without regard for phase transparency, were

originally published by Odenwalder [15] for 4PSK (with the codes in non-systematic form),

by Ungerboeck [1,4] for 8PSK, and by Wilson, et. al. [6] for 16PSK.

Tables 12, 16, and 20 list the TC-2x4PSK codes (rates of 1.5 and i.0 bit/T), the TC-

2xSPSK codes (2.5 and 2.0 bit/T), and the TC-2x16PSK codes (3.5 and 3.0 bit/T), re-

spectively. Tables 13, 17, and 21 list the TC-3x4PSK codes (1.67, 1.33, and 1.0 bit/T), the

TC-3x8PSK codes (2.67, 2.33, and 2.0 bit/T), and the TC-3xl6PSK codes (3.67, 3.33, and

3.0 bit/T), respectively. Tables 14, 18, and 22 list the TC-4x4PSK codes (1.75, 1.5, 1.25, and

1.0 bit/T), the TC-4xSPSK codes (2.75, 2.5, 2.25, and 2.0 bit/T), and the TC-4x16PSK

codes (3.75, 3.5, 3.25, and 3.0 bit/T), respectively.

Equivalent R = 5/6, TC-2xSPSK (2.5 bit/T) codes with up to 16 states have been found

independently by Lafanechfire and Costello [8] and by Wilson [9], although with reduced

phase transparency. The 2 state TC-LxSPSK and TC-Lx 16PSK codes were also found by

Divsalar and Simon [23].

In the code tables it can be seen that for the same complexity, there are usually two

codes (and in some cases three codes) that are given. Note that the code with the worst

phase transparency has a better free distance or a fewer number of nearest or next nearest

neighbors. Thus, if phase transparency is not required, one should choose the less phase

transparent code in order to obtain the maximum performance for a given complexity.

3.6 Decoder Implementation

When the Viterbi algorithm is used as the decoder, a measure of decoding complexity is

given by 2_'+k/L. This is the number of distinct transitions in the trellis diagram for any

TCM scheme normalized to a 2-D signal set. The maximum bit rate of the decoder is kfd,

where fd iS the symbol speed of the decoder. Since k is quite large for multi-D signal sets

(at least (I - 1)L), high bit rates can be achieved. For example, a Viterbi decoder has been

constructed for a rate 7/9 periodically time varying trellis code (PTVTC) with u = 4, k = 2,

and 8PSK modulation [24]. This decoder has fd = 60 MHz and a bit rate of 140 Mbit/s.

However, with the equivalent rate 7/8 code with 3xSPSK modulation, the bit rate will be

L = 3 times as fast, i.e., 420 Mbit/s. The branch metric calculator, though, will be more

complicated due to the larger number of parallel transitions between states. Alternatively,
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one could build a decoderoperating at a 20 MHz speedand achievethe same bit rate of

140 Mbit/s. In addition to providing decreased decoder complexity, this multi-D code has

an asymptotic coding gain which is 0.56 dB greater and is 90 transparent, compared with a

180 transparency for the PTVTC [25].

Although the decoding complexity of the Viterbi algorithm is measured in terms of

2_'+k/L, for multi-D schemes the complexity of subset (parallel transition) decoding must

also be taken into account due to the large number of parallel transitions.

The Viterbi decoder must find which of the 2 k-_' parallel transitions is closest, in a max-

imum likelihood sense, to the received signal. A brute force method would be to determine

the metric for each of the 2 k-i" paths and then find the minimum. This would involve at least

2 k-k - 1 comparisons. Since there are 2 _+1 sets of parallel transitions, a total of 2 k+l - 2 k+a

comparisons would be required. For large k and small k, this is an unacceptably large number

of computations.

Fortunately, as shown in [13] for binary lattices, it is possible to greatly reduce the

number of computations required. In fact, the decoding scheme becomes very similar to

Viterbi decoding, except that finite length sequences are used.

To illustrate this we will present the decoding scheme for TC-2xSPSK parallel transitions

with k" = 2 and an efficiency of 2.5 bit/T (a rate 5/6 code). There are eight sets of parallel

transitions, with eight paths in each set. Figure 13 shows the parallel transition decoding

trellis for _ = [000] (i.e., the three lsb's are set to zero). In Figure 1, we use the notation

A0 to indicate the whole 8PSK signal set, which divides into B0 and B1 (4PSK signal sets

rotated 45 ° from each other). B0 divides into CO and C2 (2PSK signal sets rotated 90 ° from

each other), and B1 divides into C1 and C3. This notation is also used in [1] for partitioning

an 8PSK signal set. Each segment in Figure 13 thus represents two parallel lines. The length

of this trellis equals the dlmensionality L = 2 of the signal set.

The path CO x CO corresponds to those four paths that have z 3 = 0 and C2 x C2

corresponds to those four paths that have z 3 = 1, giving a total of eight paths. To decode,

hard decisions can be made for CO and C2 for each time period, from which the values of z 4

and z 5 can be determined. For example, say that CO x CO decodes into the points 04, with a

metric of rno, and 6'2 x 62 decodes into the points 66, with a metric of rnt, where the'metrics

are the sum of the Euclidean distances (or log-likelihood metrics for a quantized channel)

from the first and second received points. After comparing the two metrics, if rn0 < rn_,

then z a = 0 and the point 04 would give z 4 = I and z 5 = 0 (see Table 1). if m0 > rn_,

then z 3 = 1, and the point 66 would give z 4 = 0 and z s = 1. This is equivalent to the

add-compare-select (ACS) operation within a Viterbi decoder.

To decode the other sets of parallel transitions," the cosets formed by z °, z 1, and z 2 can

be added to the trellis paths CO x CO and C2 x C2 to form the required trellis. This is

illustrated in Figure 14, where the ending state in the trellis indicates which set of parallel

transitions is being decoded. In this example, there are a total of eight hard comparisons

and eight ACS type Comparisons. These 16 comparisons compare with the 56 comparisons

required in a brute force approach, a 3.5 times reduction.

The above maximum likelihood method can be applied to other codes where a Viterbi like

decoder can be used to decode the parallel transitions. With this method, the complexity of
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decoding the parallel transitions can approach the complexity of the rate k/(k + 1) Viterbi

decoder. A simpler approach may be with large look-up tables using ROM's. The ROM

itself would output the k - _ bits of the chosen path, along with the branch metric for that

path. For the TC-2xPSK example given previously, we could use one ROM for each set of

parallel transitions. If the ROM's had eight bit words, then three bits could be used for the

decision, and the remaining five bits for the branch metric. A total of eight ROM's would

then be required, one for each set of the parallel transitions.

When using ROM's, it is desirable to reduce the number of bits (b) required to represent

each received 2-D signal point, since there are a total of bL bits required to address the ROM.

One way to reduce b is to convert the 'checkerboard' (rectangular) type decision boundaries

that result from separate quantization of the inphase (I) and quadrature (Q) components to

'dartboard' (radial) type decision boundaries. For example, if four bits are used in I and Q

for an 8PSK signal with checkerboard decision boundaries, a dartboard pattern as shown in

Figure 15 may be used instead with a total of five bits to represent each point (a reduction

of three bits). A ROM may be used to do the conversion, or the dartboard pattern may be

already available as polar coordinates from a digital demodulator.

A problem with TC-LxMPSK is the need to synchronize the decoder with the L 2-D

symbols on each trellis branch. For q = 0, most codes are fully transparent. The decoder

performance can then be used to find the correct synchronization with the received sequence.

For q > 0, many codes are not fully transparent, and the decoder will need to synchronize

to one of the 2dL possibilities (which can be quite large for some codes). However, one can

take advantage of the fact that not all signal points are used for q > 0. For example, the

2 x 8PSK signal set with q = 1 consists of the signal sets B0 x B0 or B1 x B 1. The synchronizer

would find the smallest distance between a received pair of points and the expected signal

set. These distances would then be accumulated over a sufficient length of time to make a

reliable decision on the symbol timing.

If we let each signal point be represented by its phase (since the amplitude is constant

for 8PSK), we can write B0 = {0°,90 °, 180°,270°}, and B1 = {45 °, 135°,225°,315°}. Let

¢_ and ¢I represent the phase of the first and second received symbols, respectively. The

synchronizer distance metric is then given by

(m_i min I¢_ - _l) •_n = min 1¢_ - a[ + _eBiie{0,1}

In the synchronized noiseless case, _,_ will equal zero. In the non-synchronized noiseless case,

there are two possible outcomes for _,, i.e., complete matchup (_n = 0 °) and only one signal

is matched (_,_ = 45°). If each possiblity _s equaiiy'likely, then the average value of _ is

22.5 ° . With noise, _,, can be accumulated over a sufficient length of symbols to take advan-

tage of this average phase distance between the non-synchronized and synchronized cases to

reliably determine symbol synchronization. This symbol synchronization is independent of

the Viterbi decoder, so the decoder must only determine phase synchronization.
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3.7 Discussion

In order to make a comparison of all the codes listed, a plot of nominal coding gain 7* =
2101ogl0d/r_ verses complexity (/3 = log2(2"+_'/L) = u + k"- log_ L) for each code found is

made. These plots are given in Figure 16 for effective rates of 1.0 (with 4PSK modulation),

2.0 (8PSK), and 3.0 bit/T (16PSK), Figure 17 for effective rates of 1.5 (4PSK), 2.5 (SPSK),

and 3.5 bit/T (16PSK), and Figure 18 (for the remaining rates)' (Note that these graphs do

not take into account the additional complexity due to parallel transitions.) Some one state

('uncoded') codes are included as well. These one state codes correspond to block coded

(or multilevel) schemes that have recently become an active research area [26-30]. Although

the multi-D one state codes have negative complexity (compared to trellis codes), they can

achieve coding gains above 0 dB.

Note from Figure 16 for TC-L×8PSK, R_/I 2.0 bit/T, and u = 1, that as L increases

the complexity decreases and 7* increases, eventually reaching 6.0 dB for L = 4. Thus, for the

8-D signal set, the complexity factor can be reduced by a factor of four, while maintaining

_,*, compared to the TC-I×SPSK code with z, = 2. Beyond /3 = 4 (and 7* = 6.0 dB),

increases in asymptotic coding gain are achieved with the new codes that have been found.

With L = 4, a ceiling of 7* = 9.0 dB will be reached due to the nature of the set partitioning.

It would seem that very complex codes are required (/_ > 15) if this 9.0 dB limit is to be

exceeded.

Figure 16 also shows the Lxl6PSK codes with effective rates of 3.0 bit/T. For small fl,

the same effect observed for TC-Lx8PSK and 2.0 bit/T occurs. That is, /3 decreases and

7* increases as L increases. Between/3 = 3 and/3 = 9, the L = 1 and L = 2 codes are very

close.

Figure 18 illustrates the wide range of performance that can be achieved with the codes

found. One can choose from a high rate code with 3.75 bit/T (but requiring a large amount

of power) to a low rate code with 1.25 bit/T. In choosing a code, a designer may start

with a required R_//in order to obtain a certain bit rate through a bandwidth constrained

channel. A trade-off can then be made between decoder complexity and the reduction in

SNR that can be achieved with the codes found. Simulations or theoretical calculations of

a few selected codes may also be made in order to obtMn a more realistic assesment of the

performance available.

Note that many codes have the same asymptotic coding gain for increasing complexity. In

reality, these codes do increase in performance with increasing complexity due to a decrease

in number of nearest neighbors. This is especially noticeable for low SNR where the effect

of nearest neighbors becomes more important.
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m
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4 ConClUsions i :

An efficient method of partitioning multi-dimensional MPSK signal sets has been presented

that leads to easily[mplemeted multi-D signal set mappers. When these signal sets are

combined with trellis codes to form a rate k/(k + 1) code, significant asymptotic coding

gains in comparison to an uncoded system are achieved. These codes provide a number

24



of advantagescompared to trellis codeswith 2-D signal sets. _lost importantly, R,]I can

vary from I - 1 to I - (l/L) bit/T, allowing the coding system designer a greater choice of

data rates without sacrificing data quality. As R,l.r approaches I, though, increased coding

effort (in terms of decoder complexity) or higher SNR is required to achieve the same data

performance.

The analytical description of multi-D signal sets in terms of block code cosets, and the use

of systematic convolutional encoding, has resulted in an encoder design (from the differential

encoder to the 2-D signal set mapper) that allows many good codes to be found. This

approach has also led to the construction of signal sets that allow codes to be transparent

to multiples of 360°/M phase rotations. In general, increasing phase transparency usually

results in lower code performance, due to more nearest or next nearest neighbors or smaller

free distance.

Another advantage is decoder complexity. As a Viterbi decoder decodes k bits in each

recursion of the algorithm, the large values of k of codes using multi-D signal sets allows

very high bit rates to be achieved (compared to convolutional codes that map only into a

2-D signal set). The large number of branch metric computations can be reduced either

through the use of a modified Viterbi algorithm or large look up tables. A method has been

presented that uses the redundancy in some signal sets to achieve symbol synchronization

at the decoder for codes that are not fully transparent.

Rate k/(k + 1) TC-LxMPSK codes also have the advantage of being useful as inner

codes in a high rate concatenated coding system with Reed-Solomon (RS) outer codes over

GF(2k). If the inner decoder makes errors, one trellis branch error will exactly match one

symbol in the outer RS code word. It is shown in [14] that the symbol oriented nature of TC-

LxMPSK inner codes can provide an improvement of up to 1 dB in the overall performance

of a concatenated coding system when these codes replace bit oriented TC-1 xMPSK inner

codes of the same rate.

=
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Appendix

J

I

Differential Encoding and Decoding

Let the bit streams that are differentially encoded be w_°(D), w c' (D),..., w c'-I (D). We first

assume that co > 0 (i.e., the convolutional encoder output z°(D) is not affected by a phase

rotation of 2d_, where d = I - s). Let

s-1

w(D) = _-_ 2iwC'(D). (A.1)
i=0

The differential encoder (or precoder) outputs are the bit streams x_°(D),xcl(D),...,

xC,-_(D) which go into the convolutional encoder. Similar to (A.1), we let

s-1

x(D) = _-_2ixC'(D). (A.2)
i-o

For the noiseless channel, we let the Viterbi decoder output which goes into the differential

decoder (or postcoder) be xr(D), and the output from the postcoder be wr(D). After a 2d_

phase rotation, we have from Section 3.2 that =

xr(D) = x(D)+ I(D)( mod S), (A.3)

where 5' = 2 s and I(D) is the all ones sequence. For the postcoder, we desire that wr(D) =

w(D) for all multiples of 2d_ phase rotations. This is achieved by defining the postcoder

equation as

wr(D) = ((S- I)D + 1)z_(D)( mod S). (A.4)

Substituting (A.3) into (A.4) we obtain

wr(D) = ((S- 1)D + 1)(x(D) + I(D))

= ((S- 1)D + 1)x(D) + ((S- 1)D + 1)I(D)

= w(D) + (S- 1)I(D) + I(D)

= w(D) + (S)I(D)
= w(D),

(mod S)

(mod S)

(mod S)

(mod S)

as required. Notice that since I(D) is defined to be 1 for all time, then Dil(D) = I(D) for all

i. In practical situations, the sequence added to x(D) to form x,(D) is not constant, and will

change with time (e.g., random phase slips within a demodulator). This will introduce short

error bursts in w_(D) whenever a phase slip occurs due to the combined effect of decoding

and postcoding. The precoder equation can be derived from (A.4) as

z(D) = Dx(D) + w(D)( mod S). (A.5)
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We shall now consider the case when Co = 0, i.e., z°(D) is affected by a 2eft/ phase

rotation. In this case we redefine w(D) to be

s-1

w(D) = __, 2'-'w_'(D), (A.6)
i=1

and x(D) to be
s--1

x(D) = __,2i-ix_'(D). (A.7)
i----1

For this case, we have 2xr(D) + z°(D) = 2x(D) + z°(D) + I(D), where xr(D) and z°(D)

are the inputs to the postcoder for a noiseless channel. Thus, similar to (A.4), the postcoder

equation is defined to be

2w_(D) = ((S- 1)D + 1)(2x_(D) + z°(D)) ( rood S). (A.8)

Rearranging (A.8), we obtain the precoder equation

2x(D) = 2Dx(D) + 2w(D) + (D + S- 1)z°(D) ( mod S). (A.9)

w

w
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Table 1" 2×8PSK Signal Set Partition

Partition

Level (p)

0

1

2

3

4

5

6

_2 p

f_(Co,Co,C o)

f2(Co,C0,C l)

F2(C0,C0,C 2)

f_(Co,Cx,C 2)

__(C0,C2, C 2)

_2(C 1,C2,C 2)

_'-2(C2, C 2, C 2 )

Minimum squared (A2)
subset di stance p

min(4,2,0.586) = 0.586

min(4,2,1.172) = 1. 172

min(4,2 ,oo) = 2.0

min(4,4 ,o,,) = 4.0

min(4,_,,,_) = 4.0

min(8 ,o_,o_) = 8.0

min(_,_,_) =

Generator

(tP) v

[0 1]

[1 1]

[0 2]

[2 2]

[0 4]

[4 4]

J

U

R

II

I

U

Table 2: Binary generators for L = 3 and 4.

(a) L = 3 (I)

d N (xm) v mm
m m 1

0 i 3 [11 1] 0

1 2 3 [110] 1

2 2 1 [011] 2

(c) L = 4

m d N (xm) "r
m m

0 1 4 [0001]

1 2 6 [0011]

2 2 2 [0101]

3 4 1 [1111]

(b) L = 3 (II)

d N
m m

1 3

1 1

3 1

[00 1]

[01 1]

[l 1 l]

I

II

u

II

m

m
u

I

u

I

m

m

3O
I



Table 3(a): 3x8PSK Signal Set Partition (I)

Par t i tion

Level (p)

0

1

2

3

4

5

6

7

8

9

_(C0,C0,C 0)

a(Co,Co,C  )
_'_(Co,Co,C 12)

4,

_'_(Co,Co, C 3 )

_"_(Co, C 11,C 3 )
4,

_"_(Co,C 12, C 3 )
4,

_(Co,C3,C 3)

_"_(C 12,C3,C3 )
4,

_"_(C3,C3,C 3)

Minimum squared (A 2)
subset distance p

,2,0.586) = 0

,2,1.172) = 1

,2,1.172) = 1

,2,00) = 2

,4,o_)

,4, ,,,,)

min(oo,_,oo)

=4

=4

=4.0

=8.0

=8.0

min(4

min(4

rain(4

min(4

min(4

min(4

min(4

rain(8

rain(8

• 586

. 172

.172

.0

.0

.0

GeneratQr
(tP)"

[1 1 11

[1 10]

[0 1 1]

[2 2 2]

[2 2 O]

[0 2 2]

[4 4 41

[4 4 O]

[0 4 41

Table 3(b): 3x8PSK Signal Set Partition (II)

= =
w

1 .

Partition

Level (p)

0

1

2

3

4

5

6

7

8

9

f_(C0,C0,C 0)

_(Co,Co,C _)
4"

_"_(Co, Co, C 22)
4"

xq(C0,C0,C s)

_"2(Co, C 11,C3 )
4"

_"2(Co, C 12, C 3 )
4,

__(C0, C3,C3)

_c"2(C 11,C3,C3)

_(C 12,C3,C3 )
4"

_"2(C3,C3,C3)

Minimum squared
subset distance (_AZJ

P

min(4

min(4

min(4

min(4,2

min(4,4

min(4,4

min(4 ,oo

min(8 ,o_

rain(8 ,_o

min(oo,oo

,2,0.586)

,2,0.586)

,2,1.757)

,oo)

,oo)

,oo)

,_)

,oo)

,oo)

,oo)

= 0. 586

= 0. 586

= 1. 757

=2.0

=4.0

=4.0

=4.0

=8.0

=8.0

GeneratQr
(tP)"

[00 11

[0 1 11

[1111

[2 2 21

[2 2 O]

[0 2 21

[4 4 41

[4 4 0]

[0 4 4]

=
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Table 3(c): 3x8PSK Signal Set Partition (III)

I

Partition 1Level (p)

0

1

2

3

4

5

6

7

8

9

_"_P

f_(C0,C0,C 0)

_'_(C0, C0, C21 )

f_(Co,Co,C _)
4,

f_(Co,Co,C 3)

_2(C_,C2,C )

40 2 3

_"_(C 1 C 2 C "
1'4, 2 ' 3 )

_"2( C 11,C3, C 3 )
4,

_'_(C 12, C 3, C 3 )

_(C3,C3,C 3)

Minimum squared (A 2)
subset distance p

min(4

min(4

min(4

min(4

min(4

min(4

min(8

,2,0.586)

,2,0.586)

,2,1.757)

,2,_)

,2,_)

,6,_)

,6,_)

min(8 ,_,_,)

min(8 ,_,_)

min(_,oo,_

= 0. 586

= 0. 586

= 1. 757

=2.0

=2.0

=4.0

=6.0

=8.0

=8.0

GeneratQr
(tP) L

[0 0 1]

[0 1 11

[1 1 1]

[0 0 21

[0 2 2]

[4 4 41

[2 2 2]

[4 4 o]

[0 4 4]

Table 4: 4x8PSK Signal Set Partition.

w

= =
m

w

Part ition

Level (p)

0

1

2

3

4

5

6

7

8

9

10

11

12

,i

fi(Co,Co,(- o)

_"_(Co, Co,i! 1 )

_-_(Co,Co,(.2)

f2(Co,Co,_! 3)

_"_(Co,_ 1 ,C3)

_(Co,Cl,/_ 4)

_")(Co,_2,C4)

_")(Co,_3,C4)

_'_(_ ! 'C3'C4)

_"_((: 1 '_4'C4 )

_"2(_:2,C4,C4)

_"_(_3,C4, C4)

_")(_4,C4,C4)

Minimum squared (A2)
subset d i stance p

,2,0.586) = 0

,2, 1. 172) = 1

,2, 1 .172) = 1

,2, 2 .343) = 2

,4, 2.343) = 2

min(4

min(4

min(4

min(4

min(4

• 586

• 172

• 172

.0

• 343

) =4.0

) =4.0

) =4.0

=8.0

=8.0

=8.0

=16.0

____ oo

min(4,4 , o,,

min(4,4 ,oo

min(4,8 , oo

min( 8,8 , o,, )

min(8 ,,,_, oo)

min(8 ,co, oo)

min(1 6, oo, oo)

min(oo,oo, oo)

GeneratQr
(tP)"

[00011

[00 11]

[0101]

[0002]

[1111]

[0022]

[0202]

[0004]

[2222]

[0o 4 4]

[0404]

[4444]

32



w

Table 5: Summary of L×4PSK partitions.

Partition

Level (p)

0
1
2
3
4
5
6
7

Po P_

L =2

MS SD gen.

( A 2 ) (tP_
p

2 01
4 11
4 02
8 22

L=3 (I)

MS SD gen.

( A 2 ) (tP_
p

2 111
4 110
4 011
4 222
8 220
8 022

13 1I 03

L=3"(II)

MSSD gen.

(A 2 ) (tP_
P

2 001
2 011
4 222
6 111
8 2201
8 022

3 2

L=3 (III)

MSSD gen.

( A 2 ) (tP5
p

2 001
2 011
4 002
4 022
6 111

1 2 222

L =4

MSSD gen.

( a 2 ) (tp_
P

2 0001
4 0011
4 0101
4 0002

8 1111
8 0022
8 0202

1 6 2222

45 11 47

Table 6: Summary of Lx8PSK partitions.

m

m

M
u

m
I

m

D
!

L = 2 L=3 (I) L=3 (II) L=3 (III) L = 4

Partition

Level (p)

0
1
2

MSSD gen. MSSD gen. MSSD gen. MSSD gen. MSSD gen.

(A 2 ) (tP_ (A 2 ) (tP_ (A 2 ) (tPS (A 2) (tPS (A 2 ) (tPS
p p p p p

0.586 01 0.586 111 0.586 001 0.586 001 0.586 0001
1 . 172 11 1 . 172 110 0.586 011 0.586 011 1 . 172 0011

2 02 1.172 011 1.757 111 1 .757 111 1 .172 0101
3
4
5
6
7
8
9
10
11

Po P l P2

4 22 2 222 2 222 2 002 2 0002
4 04 4 220 4 220 2 022 2 .343 1111
8 44 4 022 4 022 4 444 4 0022

4 444 4 444 6 222 4 0202
8 440 8 440 8 440 4 0004
8 044 8 044i 8 044 8 2222
- - 8 0044

- - 8 0404
- - 1 6 4444

4 8 11

I

m

I

!

[]

[]

I

r
==

n

33 m _
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Table 7: Summary of L×16PSK partitions.

Par t i t ion

Level (p)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

L = 2 L=3 (I)

MSSD

(A 2 )
p

0. 152 01
0 .304 11
0. 586 02
1 . 172 22

2 04
4 44
4 08

8 88

1 357

L=3 (II) L=3 (III) L = 4

gen. MSSD

(tP_ ( A 2 )
P

0.152
0. 3 04 110 0
0.304 011] 0

0.586 222_ 0
1. 1 72 220 1
1 . 1 72 022 1

2 444
4 440
4 044
4 888
8 880
8 088

PoPlP2P3

gen. MSSD gen. MSSD gen. MSSD gen.

(tPS ( A 2 ) (tP_ ( A 2 ) (tP_ ( A 2 ) (tP_
p P P

111 0.152 001 0.152 001 0.152 0001
• 1 52 011 0
• 457 111 0
• 5 86 222 0
• 1 72 220 0
• 1 72 022 1

2 444
4 440
4 044
4 888
8 880
8 088

.

• 1 52 011 0
• 457 111 0
.5861 002 0
.5861 022 0
• 757 222 1

2 444 1
4 440

• 3 0 4 0011
• 3 0 4 0101
• 5 8 6 0002
• 6 09 1111
• 1 7 2 0022
• 1 7 2 0202

2 0004
4 044 2 .343 2222
4 888 4 0044
8 880 4 0404
8 088 4 0008
- - 8 4444
- - 8 0088
- - 8 0808
- - 16 8888

O369 2369 2 569 4 8 1215

w

=

w
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Table 8: 2×2×8PSK signal set partition.

P

0

1

2

3

4

5

6

7

8

9

10

11

12

_'_P

f_(C0'C0'C o ' C0'CoJ'0)

f/(C0,C0,C ,Co,C0,i_.)
0 u ,_l

f_(C0'C0 'C 0 'C0'C0'{'2)

_'_(Co'Co'C o '{_o'_1'C2 )

,C l,C 2)
_(C0'C0'C 0 'i_'1,i_2,C2)_(C0,C0,C 0 ,I; 1

f/(C0,C0,C ,i _ C0 "2'C2 ' 2 )

_"_(Co,Co,_ ,C2,C2,C 2)

_._(C0,_1, C 1 'C2'C2'C2)

_'2(C°'C1' _ 1 'C2'C2'C2)

f_(Co,_2,C 2 'C2'C2'C2)

_,._(_1,C2,C 2 'C2'C2'C2)

_'_(_2'C2 'C i 'C2'C2'C2)

Minimum squared (A2)
subset di stance p

min(8,4, 4, 2, 1 . 172,0.586) = 0.586

min( 8,4

min( 8,4

min( 8,4

min(8,4 , 4, 4, 2. 343,oo)

min(8,4 , 4, 4,oo,o0)

min(8,4 , 4,oo,oo,oo)

min(8,4, 8, oo, oo, oo)

min(8,8 , 8 .oo,oo, o0)

min(8,8 ,oo,oo,oo,oo)

min( 8, oo, o,, oo, oo, _o )

min( 1 6, oo, oo, oo, oo, oo)

mln(oo, oo , oo , oo , oo , oo )

= 1. 172

, 4, 2, 1 . 172,1.172) = 1. 172

,4,2, 1 172,oo)

,4, 2,2 343,00) = 2.0

= 2. 343

=4.0

=4.0

=4.0

=8.0

=8.0

=8.0

=16.0

OO

geniT(t p

[o 1]

[1 1]

[0 2]

[0 4]

[2 21

[4 4]

[o 8]

[0 16]

[8 81

[16 16]

[0 32]

[32 32]

E

u

R

[]

Ill

n

m

I

Table 9: Binary generators for L = 5 and 7.

II
ITI d

L = 5 (I)

Ill

0 1 5 [11111]
1 2 10 [00011]
2 2 4 [00101]
3 2 1 [ 11000]
4 4 1 [011111

N (zT)T d
m

1
1
2
3
4

L = 5 (II)

N m ('1:_) T

25 [111111[000011

2 [001101
2 [10101]
1 [01111]

L = 5 (III)

d N
m m

1 5
1 1
2 3

2 1
5 1

[00001]
[ooo lO]
[00101]
[01001]
[11111]

1!

=_

L = 7 (I)
-- ir

d N (,[ .m)T dm
m m 1 m

1 7 [1111111] 1

2 2 1 [0000011] 1
2 9 [0001001] 2

2 3 [0010010] 2
2 1 [0001100] 3
4 2 [1111000] 4

6 1 [0111111] 6

L = 7 (II)

N m ('_2) T

L = 7 (III)

d N (,_)r
m m

7 [1111111] 1
2 [0000001] 1
5 [00001011 2
1 [01000101 2
3 [0011100] 3
2 [ooo111111 4
1 [1110111] 5

7 [0000001]
1 [00010001
6 [1111111]
2 [0000101]
2 [0101010]
1 [1100011]
1 [0011111]

L = 7 (iV)

d N (%4)T
l_ ITI

1 7 [0000001]
1 3 [0001 0 00]
1 1 [ 1000 0 00]
3 7 [0110100]
3 3 [0011010]
3 1 [0001 101]
7 1 [1111111]

i

EE

_£

g

35
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Table 10: Squared Euclidean Weights used in the code search for

rate 7/8 (2.33 bit/T) codes with 3×8PSK (II) and k = 2.

11

000
001
010
011
100
101
110
111

w2(e) m(e)

0.0 1

1. 172 2
1.757 4
0.586 1
2.0 6
1. 172 2
1.757 4
0.586 1

=

R
eff

Table 11: Trellis Coded lx4PSK.

= 1.0 bit/T, d 2 = 4.0, N = 1 (lx2PSK).
U U

v _ h 1 h ° Inv. d 2 N d 2 N
free free next next

u

1 1 1 3 360 6 1 - - 1.76
O

2 1 2 5 360 10 1 - - 3.98
O

3 1 06 13 180 12 2 - - 4.77
O

1 04 13 360 12 1 - - 4.77
O

4 1 06 21 180 12 1 - - 4.77
O

1 10 23 360 14 2 - - 5.44
O

5 1 36 45 180 16 2 - - 6.02
O

1 26 53 360 16 1 - - 6.02
O

6 1 042 117 180 20 11 - - 6.99
O

7 1 126 235 180 20 2 - - 6.99
O

1 144 223 360 20 1 - - 6.99
O

8 1 262 435 180 24 11 - - 7.78
i I o

1 362 515 360 24 9 - - 7.78
O

9 1 0644 1123 180 24 2 - - 7.78
O

1 0712 1047 360 24 1 - - 7.78

7 (dB)

72 = 0dB

=

w

36



Table 12(a): Trellis Coded 2x4PSK.

Reff = 1.5 bit/T, q--0, d2u = 4, N, = 6 (2x4PSK).

2 d 2
h 3 h 2 h 1 h ° Inv. dfr Nfree Nee next next

v _ y (dB)

----O

1 1 - 1 3 180 4 2 6 8 0.00
O

2 2 1 3 5 90 6 6 - - 1.76
O

3 2 - 04 06 11 90 8 5 - - 3.01
O

4 2 10 06 23 90 8 1 10 16 3.01
O

5 3 14 30 02 41 180 10 8 - - 3.98
O

3 16 24 06 53 360 10 7 - 3.98
O

6 3 030 042 014 103 180 12 40.25 - 4.77
O

3 076 024 010 157 !360 12 30.75 - 4.77
O

7 3 044 022 114 211 180 12 8 - 4.77

Y2 = 1.76 dB

W

=_

I

z
I!

V

1

2

3

4

5

6

7

8

Table 12(b): Trellis Coded 2x4PSK.

Ren = 1.0 bit/T, q=l, d2u = 4.0, Nu = 1 (lx2PSK).

o]

1 - 1 3 90 8 5
O_

1 - 2 5 90 8 1 12
Ol

2 04 02 11 360 12 5
O

2 14 06 23 180 12 1 -
O

2 30 16 41 180 16 8 -
O

2 036 052 115 180 16 1 -
o

2 044 136 203 180 20 6 -
O

2 110 226 433 180 24 33 -

2 N d 2
h 2 h I h ° Inv. dfree free next N y (dB)

next

3.01

8 3.01

4.77

4.77

6.02

6.02

6.99

7.78

Y2 =0dB

m

W

i

m
W

W

U

m

m
m
J

t
g

Im

37
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Table 13(a): Trellis Coded 3x4PSK.

= 1.67 bit/T, q=0, d 2 = 4.0, N = 15 (3x4PSK I).
U U

V k h 3 h 2 h 1 h ° Inv. d 2 Nf_ d 2 N
free cc ncxt next

1 1 -

22 -

2 -

3 2 -

2 -

1 3 90 °
O

2 1 5 90
O

2 1 5 360
O

04 02 11 90
O

04 02 11 360
O

3 05 04 02 11 90
O

4 2 - 14 02 21 180
O

3 3 01 02 06 11 360
O

4 3 10 04 02 21 90
O

3 12 04 02 21 180
O

5 3 24 14 02 41 180
O

6 3 024 042 010 105 180

4 7 6

4 3 6

4 2 -

4 1 6

6 11 -

4 0.25 -

6 6 -

6 4 -

6 5.5 -

8 19 -

8 7 -

8 3 10

7 (dB) sig.
set

32 0.00 I

24 0.00 I

- 0.00 II

6 0.00 Ill

- 1.76 II

- 0.00 III

- 1.76 II

- 1.76 II

- 1.76 III

- 3.01 I

- 3.01 I

16 3.01 I

3,2 = 2.22 dB

w

W

=
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Table 13(b): Trellis Coded 3x4PSK.

Reff = 1.33 bit/T, q=l, d2u= 4.0, Nu = 3 (3x4PSK II).

1 1 - 1 3 90" 4 1 8 4 0.00 III
O

1 - 1 3 360 6 7 - - 1.76 II
O

2 1 - 2 5 360 6 4 10 9 1.76 II
O

2 2 1 5 90 6 2 8 4 1.76 III
O

2 3 1 5 180 8 21 - - 3.01 I
O

i2 - 2 1 5 360 8 16 - - 3.01 II
O

3 2 04 02 11 90 6 2 8 I 1.76 III
O

2 02 06 11 180 8 3 12 100 3.01 II
O

3 06 04 03 11 90 8 1 - 3.01 III
O

4 3 14 04 12 23 90 10 5 - 3.98 III
O

5 3 30 04 22 43 90 12 13 - 4.77 III
O

6 3 036 060 026 103 90 12 2 - 4.77 III
O

7 3 140 160 062 213 90 12 1 14 5 4.77 III
O

3 004 154 056 207 180 12 1 16 128 4.77 III

h 3 h 2 h I h ° Inv. d2free Nfree d_ext Nnext Y (dB) seSig't

Y2 = 1.25 dB

i

I
i

J

=

U

I

i

mB
g

m

U

U

i
J

w
g

J

i
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Table 13(c): Trellis Coded 3x4PSK.

= 1.00 bit/T, q=2, d 2 = 4.0, N = 1 (lx2PSK).
I1 U

00

1 1

1

22

32

2

42

2

3

53

3

63

7i3

3

h 3 h 2 h I h ° Inv. d 2 d 2 N
free Yfree next next

- - 90 ° 6 4 -

1 3 90_ 6 2 8

- 1 3 180 8 3 12
Oi

3 2 5 90 10 4 -
Oi

06 02 11 90 10 2 -
Oi

02 06 13 180 12 5 -
O_

12 16 21 90 12 1 14
O_

04 12 27 180 12 1 16
O

10 04 02 21 180 14 3 -
O

22 16 04 53 180 16 2 -
O

24 14 02 43 360 16 1 -
O

070 004 022 101 180 18 3
O

156 024 046 213 180 20 3
O

044 014 102 217 360 20 2

1

16

2

22

_'2 = 0.0 dB

7 (dB) sig.
set

1.76 II

1.76 III

3.01 " II

3.98 III

3.98 III

4.77 III

4.77 III

4.77 III

5.44 II

6.02 II

6.02 II

6.53 II

6.99 II

6.99 II

L

w

w

w

40
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Table 14(a): Trellis Coded 4x4PSK.

Reff = 1.75 bit/T, q=0, d 2. = 4.0, Nu = 28 (4x4PSK).

1 1

22

33

43

53

63

h 3 h 2 h 1 h °

- 1 3

- 2 1 5

04 02 01 11

10 04 02 21

24 14 02 41

050 032 004 103

90 4
O

90 4
o

90 6
oi

90 8
oi

90 8
o

90 8

12

4

28

78

30

14

6

6

10

64

48

160

7 (dB)

0.00

0.00

1.76

3.01

3.01

3.01

Y2 = 2.43 dB

Table 14(b): Trellis Coded 4x4PSK.

Ref f = 1.50 bit/r, q=l, d z. = 4.0, N_ = 6 (2x4PSK).

h 4 h 3 h 2 h ! h ° Inv. d 2 d 2 N
free Nfree next next

1 1 - 1 3 90 _ 4 4 8 64
o

2 2 - 2 1 5 90 8 78
O

3 2 - 04 02 1I 90 8 30 -
O

4 2 - 12 04 23 90 8 16 12 320
O

5 3 14 34 06 41 90 8 6 12 176
o

3 04 14 22 43 180 8 6 12 160
O

6 4 014 006 056 022 103 90 8 2 12 62

Y2 = 1.76 dB

Y (dB)

0.00

3.01

3.01

3.01

3.01

3.01

3.01

mw

IB

J

m
u

I

m

I

I

i
m
m

I

I

g :

m

U

z

I

!

r
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1 1

2 1

32

2

3

43

54

64

Table 14(c): Trellis Coded 4x4PSK.

Ref f = 1.25 bit/T, q=2, d2u = 4.0, Nu = 4 (4x4PSK).

h 4 h 3 h 2 h 1 h ° Inv. d 2 N d 2 N ), (dB)
free free next _ next

1 3 90 U 8 30 - 3.01
o

2 5 90 8 14 12 64 3.01
O

06 02 11 90 8 6 12 64 3.01
o

- 02 06 11 180 8 6 12 32 3.01
o

- 01 03 06 11 90 8 2 12 56 3.01
O

- 10 14 06 21 90 8 2 12 8 3.01
o

10 04 06 22 41 90 12 8 4.77
O

024 014 006 042 103 90 16 109 6.02

Y2 = 0.97 dB

w

Table 14(d): Trellis Coded 4x4PSK.

00

1 1

22

33

43

53

63

Reff = 1.00 bit/T, q=3, d2u = 4.0, Nu = 1 (lx2PSK).

h 3 h 2 h 1 h ° Inv. d 2 d 2 N
free Nfree next next

_ _ 90 °
o

- 1 3 180 64
o

- 2 3 5 90
O

02 04 03 11 90
o

02 10 06 21 90
O

22 10 06 41 90
o

010 060 036 105 90

8 14

8 6 16

8 2 16

16 45 -

16 17 -

16 5 -

16 1 20

64

4

y (dB)

3.01

3.01

3.01

6.02

6.02

6.02

6.02

_=0dB

u

42
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Table 15: Trellis Coded lx8PSK.

= 2.0 bit/T, d2 = 2.0, N = 2 (lx4PSK).
U II

v _ h 2

1 1 1

2 1 2

32 04 02

42 14 06

2 16 04

5 2 14 26

2 20 10

6 2 074 012

7 2

2

82

2

h I h ° Inv. d 2 N d 2
free free next

3 180 ° 2.586 2
O

5 180 4.0 1 4.586
O

11 360 4.586 2
O

23 180 5.172 4
O

23 360 5. 172 2.25
O

53 180 5.172 0.25
O

45 360 5.757 2
O

147 180 6.343 3.25
O

146 052 225 180 6.343 0.125
O

122 054 277 360 6.586 0.5
O

146 210 573 180 7.515 3.375
O

130 072 435 360 7.515 1.5

_=0dB

N
Next

4

y (dB)

1.12

3.01

3.60

4.13

4.13

4.13

4.59

5.01

5.01

5'18

5.75

5.75

I

I

i
I

u

I

I

I z

z

I

7%: : : m
I

Ill

I

I

I

tim

I

I
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Table 16(a): Trellis Coded 2x8PSK.

= 2.5 bit/T, q=0, d 2 = 1.172, N = 4 (2x8PSK).
u 11

v _ h 3 h 2 h I h °

11 - 1 3

21 - 2 5

3 2 04 06 11

4 2 16 12 23

5 2 10 06 41

62 004 030 113

12 044 016 107

7 i3 110 044 016 317

Inv. d_ N d 2 N 7 (dB)ree free next next

¢J

90 1.757 8 2.0 4 1.76
0

90 2.0 4 2.929 32 2.32
0

45 2.929 16 - - 3.98
O

45 3.515 56 - - 4.77
O

45 3.515 16 - - 4.77
O

45 4.0 6 4.101 80 5.33
O

90 4.0 6 4.101 48 5.33
O

90 4.0 2 4.101 25 5.33

74 = -1.35 dB

w

R
eft

Table 16(b): Trellis Coded 2x8PSK.

= 2.0 bit/T, q=l, d 2 = 2.0, N = 2 (lx4PSK).
U U

v _ h 3 h 2 h 1 h ° Inv. d 2
free

u

1 1 - 1 3 45 3.172
O

2 1 - 2 5 45 4.0
O

3 2 04 02 11 180 4.0
O

4 3 04 14 02 21 90 5.172
O

5 3 24 14 06 43 90 6.0
O

6 3 012 050 004 125 90 6.343
O

7 3 110 044 016 317 90 7.515

74 =0dB

N d 2 N 7 (dB)
free next next

8 4.0 6 2.00

6 5.172 32 3.01

2 5.172 16 3.01

8 - - 4.13

6 - - 4.77

5.5 - - 5.01

25 - - 5.75

-2
w
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Table 17(a): Trellis Coded 3x8PSK.

Reef = 2.67 bit/T, q--0, dZu = 1.172, Nu = 12 (3x8PSK I).

_, h 3 h 2 h 1 h ° Inv. d 2 N d 2
free free next

1 - 1 3 45 1.172 4 -
O

1 - 2 5 45 1.757 16 -
O

2 - 04 02 11 45 2.0 6 2.343
O

3 14 04 02 21 90 2.343 12 -
O

3 10 04 02 21 180 2.343 8 -
O

3 30 14 02 53 90 2.929 48 -
O

3 050 022 006 103 90 3.172 12 -
O

3 056 112 004 225 90 3.515 84 -
O

3 100 050 022 255 180 3.515 76 -

N
next

7 (dB) sig-
set

- 0.00 II

- 1.76 II

16 2.32 I

- 3.01 !

- 3.01 I

- 3.98 I

- 4.33 I

- 4.77 I

- 4.77 I

74 = -1.07 dB

w

I

B

g

I

i

I

lm

Table 17(b): Trellis Coded 3x8PSK.

Reff = 2.33 bit/T, q=l, d 2. = 1.757, Nu -- 8 (3x8PSK II).

1 1

22

32

2

43

2

53

63

4

h 4 h 3 h 2 h I h ° Inv. id 2 N d 2
i free free next

- 1 3 90 U 2.0
O

- 3 1 7 90 2.586
O

- 06 02 11 90 3.515
O

- 04 02 11 180 3.757
O

10 04 06 21 45 3.757
O

- 14 02 27 90 4.0
O

22 16 06 41 45 4.0
O

010 046 060 105 45 4.0
O

060 024 014 002 101 180 4.0

6 2.343

6

16

24

12

15 4.343

7 -

3 4.6861

2 -

N T (dB)
next

16 0.56

1.68

3.01

3.30

3.30

24 3.57

- 3.57

8 3.57

- 3.57

sig.
set

II

II

II

II

III

!I

III

III

III

74 = 0.11 dB

IB

=

m

I

B

m

J

45
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Table 17(c): Trellis Coded 3x8PSK.

Reff = 2.00 bit/T, q=2, d2u = 2.0, Nu = 2 (lx4PSK).

vE

1 1

2 1

3 2

42

53

3

63

4

h 4 h 3 h 2 h I h ° Inv. d 2 N d 2
free free next

- - 1 3 180 _ 3.757 24 -
0

- - 2 5 180 4.0 15 5.757
0

- - 04 02 11 45 4.0 7 -
0

- - 12 04 27 45 4.0 3 5.757!
0

- 14 24 02 41 180 5.757 17.5 -
0

- 16 22 06 53 360 5.757 17 -
0

- 030 042 014 103 180 6.0 11
0

014 044 024 006 103 180 6.0 4

74 = 0 dB

N
next

144

32

sig.
7 (dB) set

2.74 II

3.01 II

3.01 III

3.01 III

4.59 III

4.59 III

4.77 III

4.77 II

w

46
w



Table 18(a): Trellis Coded 4x8PSK.

Raf = 2.75 bit/T, q--0, d2u = 1.172, Nu = 24 (4x8PSK).

1 1

22

32

43

53

64

- 2 1 5

04 02 11

10 04 02 21

30 14 02 41

030 020 052 014 101

h 4 h 3 h 2 h I h ° Inv. d 2 N d 2
free free next

u

- 1 3 45 1.172 8 1.757
o

45 1.757 48 -
O

45 2.0 8 2.343
O

45 2.343 40 -
O

45 2.343 8 2.929
O

45 2.929 136 -

"/4 = -0.94 dB

N _, (dB)
next

64 0.00

- 1.76

64 2.32

- 3.01

288 3.01

- 3.98

Table 18(b): Trellis Coded 4x8PSK.

Ref f = 2.50 bit/T, q=l, d_u = 1.172, Nu = 4 (2x8PSK).

1 1

22

32

43

53

h 3 h 2 h 1 h ° rlnv. d 2 d 2 N 7 (dB)
free Nfree next next

u

- - 1 3 45 2.0 8 2.343 64 2.32
O

- 2 1 5 45 2.343 40 - - 3.01
O

- 04 02 11 45 2.343 8 3.172 32 3.01
O

14 04 02 21 45 3.172 16 - 4.33
O

24 14 02 41 45 3.515 64 - 4.77
O;

6 3 014 024 042 103 45 4.0 28 4.686 1088 5.33

74 = -1.35 dB

U

l
g

J

m

m

i

I

i

I

m
m

m
u

m
u

m
i ;

z

m

il

•
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Table 18(c): Trellis Coded 4x8PSK.

Reff = 2.25 bit/r, q=2, d2u = 2.0, Nu = 8 (4x8PSK).

v _ h 4 h 3 h 2 hi h o Inv. d 2 N d 2
free free next

1 1

22

32

4

5

o

- 1 3 45 2.343
O_

3 1 5 45 3.172
O

06 02 11 45 4.0
O

2 02 06 11 90 4.0
O

3 04 06 12 21 45 4.0
0

4 10 04 06 22 41 45 4.0

N 7 (dB)
next

8 3.172 32 0.69

16 - - 2.00

28 4. 343 64 3.01

28 4.686 64 3.01

12 4.686 32 3.01

4 4.686 16 3.01

T4 = 0.51 dB

Table 18(d): Trellis Coded 4x8PSK.

Reff = 2.00 bit/r, q=3, d2u = 2.0, N u = 2 (I×4PSK).

i

vi

1

2

3

h 4 h 3 h 2 h I h ° Inv. d 2
free

u

1 - 1 3 90 4.O
0

2 2 3 5 45 4.0
O

3 02 04 03 11 45 4.0
O

4 10 04 02 03 21 45 4.686
O

4 02 10 04 22 41 45 6.343
O

4 034 044 016 036 107 45 6.686
0

4 044 024 014 016 103 90 7.029

1'4 = 0dB

d 2
Nfr ee next Nnext It (dB)

28 4.686 64 3.01

12 4.686 32 3.01

4 4.686 16 3.01

8 - - 3.70

16 - - 5.01

6 - - 5.24

24 - - 5.46

-: 48
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Table 19: Trellis Coded IxI6PSK

= 3.0 bit/T, d 2 = 0.586, N = 2 (lx8PSK).
U U

h 2 h _ h ° Inv. d 2 d 2 N
fre Nfr t nexte ee nex

u

1 - 1 3 90 0.738 2 - -
O

1 - 2 5 90 1.324 4 - -
O

1 - 06 13 45 1.476 8 - -
O

1 - 04 13 90 1.476 4 - -
O

1 - 06 21 45 1.476 4 - -
O

1 - 10 23 90 1.628 4 - -
O

1 - 24 43 45 1.781 8 - -
O

1 - 10 45 90 1.910 8 - -
O

1 - 056 135 45 2.0 2 2.085 16
O

1 - 032 107 90 2.0 2 2.085 8
O

1 - 126 235 45 2.0 2 2.366 16
O

2 344 162 717 90 2.085 2.938 - -
O

2 224 112 527 180 2.085 1.219 - -

y (dB)

1.00

3.54

4.01

4.01

4.01

4.44

4.83

5.13

5.33

5.33

5.33

5.51

5.51

y8 = 0 dB

I

U

g

J

i

: _i 27EI 7:

I

m

I

m

W

I

I

w

m
g
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Table 20(a): Trellis Coded 2x16PSK.

= 3.5 bit/r, q=0, d 2 = 0.304, N = 4 (2xl6PSK).
U g

h 2 h 1 h ° Inv. d 2 d 2 N
free Nfree next next

J

1 1 3 45 ° 0.457 8 - - 1.76
O

1 2 5 45 0.586 4 0.761 32 2.84
O

2 04 06 11 22.5 0.761 16 - - 3.98
O

2 16 12 23 22.5 0.913 56 - - 4.77
O

2 10 06 41 22.5 0.913 16 - - 4.77
O

2 004 030 113 22.5 1.066 80 - - 5.44
O

12 044 016 107 45 1.066 48 - - 5.44
O

2 074 132 217 22.5 1.172 4 1.218 228 5.85

7 (dB)

78 = -2.17 dB

Table 20(b): Trellis Coded 2xl6PSK.

Re_ ; 3.0 bit/T, q=l, d 2. - 0.586, Nu = 2 (lx8PSK)

v _ h 3 h 2 h 1 h ° Inv. d 2 N d 2 N
free free next next

1 1 -

2 1 -

32 -

42 -

52 -

6 2 - 044 016 107

7 3 110 044 016 317

7 (dB)

1 3 22.5 U 0.890 8 - 1.82
O

2 5 22.5 1.172 4 1.476 32 3.01
O

04 02 11 90 1.476 16 - 4.01
O

14 06 23 45 1.757 8 - - 4.77
O

30 16 41 45 1.781 16 - - 4.83
O

45 2.0 4 2.085 48 5.33
O

45 2.085 25 - - 5.51

Y8 =0dB
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Table 21(a): Trellis Coded 3xl6PSK.

= 3.67 bit]T, q=0, d 2 = 0.304, N = 12 (3xl6PSK I).
U I1

h 3 h 2

1 -

1 -

2 - 04

3 14 04

3 10 04

3 30 14

h 1 h ° Inv. _d2 d 2 N
free Nfree_ next next

u

1 3 22.5 10.304 4
O

2 5 22.5 0.457 16
O

02 11 22.5 0.586 6 0.609 16
O

02 21 45 0.609 12
O

02 21 90 0.609 8
O

02 53 45 0.761 48
O

45 0.890 12
O

45 0.913 84
O

90 0.913 76

3 050 022 006 103

3 056 112 004 225

3 100 050 022 255

_t (dB) sig.
set

0.00 II

1.76 II

2.84 I

3.01 I

3.01 I

3.98 I

4.66 I

4.77 I

4.77 I

_=0dB

m

RI

II

I

I

I

I

m
I

Table 21(b): Trellis Coded 3xl6PSK.

R = 3.33 bit/T, q=l, d 2 = 0.457, N = 8 (3xl6PSK II).
eft u u

1 1

22

32

2

43

2

53

h 3 h 2 h I h ° Inv. d 2 d 2 N y (dB)sig.
free Nfree next next !set

O

- 1 3 45 0.586 6 0.609 16 1.08 II
O

- 3 1 7 45 0.738 6 - 2.08 II
O

- 06 02 11 45 0.913 16 - 3.01 II
O

- 04 02 11 90 1.043 24 - 3.58 II
O

10 04 06 21 22.5 1.043 12 - 3.58 III
O

- 14 02 27 45 1.172 12 1.195 24 4.09 II
O

34 16 06 41 22.5 1.172 4 - 4.09 III
O

613 _ 032 046 006 103 22.5 1.218 8 - 4.26 III
O

7 3 014 102 044 203 22.5 1.370 32 - 4.77 III
O

3 006 072 062 223 45 1.476 '8 - 5.09 III

YS = -1.97 dB

II

I

=

il

w

I

I

m

51
U



R
eff

Table 21(c): Trellis Coded 3×16PSK.

= 3.00 bit/T, q=2, d 2 = 0.586, N = 2 (lx8PSK).
I1 U

1 1

2 1

3

4

52

2

62

3

3

73

3

h 3 h 2 h _ h ° Inv. d 2 d 2 N
free Nfree next next

o

1 3 90 1.043 24 -
O

2 5 90 1.172 12 1.628 144
O

04 02 11 22.5 1.172 4 -
O

12 04 27 22.5 1.628 32 -
O

14 02 41 22.5 1.628 16 -
O

22 14 43 45 1.757 16 -
O

054 020 115 22.5 1.757 8 2.085 48
O

020 004 012 101 45 2.0 6 2.085 72
0

050 030 026 101 90 2.0 6 2.085 60
O

060 106 050 213 45 2.0 6 2.214 56
O

016 110 052 203 90 2.0 6 2.343 64

78 =0dB

y (dB) sig.
set

2.50 II

3.01 II

3.01 III

4.44 III

4.44 III

4.77 III

4.77 III

5.33 II

5.33 II

5.33 III

5.33 III

w

w

52
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Table 22(a): Trellis Coded 4xl6PSK.

= 3.75 bit/T, q=0, d 2 = 0.304, N = 24 (4xI6PSK).
U U

V _ h 4 h 3 h 2 h 1 h °

1 1 - - 1 3

22 - 2 1 5

3 2 - 04 02 11

4 3 - 10 04 02 21

5 3 - 30 14 02 41

6i4 030 020 052 014 101

Inv. d2 N d 2 N y (dB)
free free next next

o

22.5 0.304 8 0.457 64 0.00
O

22.5 0.457 48 - - 1.76
O

22.5 0.586 8 0.609 64 2.84
O

22.5 0.609 40 - - 3.01
O

22.5 0.609 8 0.761 288 3.01
O

22.5 0.761 136 - - 3.98

Y8 = -1.87 dB

Table 22(b): Trellis Coded 4xI6PSK.

Ref f 3150 bit/T, q=l, d2_ = 0_3_, Nu = 4 (2xl6PSK).

v _ h 3 h 2 h 1 h ° Inv. d 2 N d 2 N
free free next next

O

1 1 - - 1 3 22.5 0.586 8 0.609 64
O

2 2 - 2 1 5 22.5 0.609 40
O

3 2 - 04 02 11 22.5 0.609 8 0.890 32
O

4 3 14 04 02 21 22.5 0.890 16 -
O

5 3 24 14 02 41 22.5 0.913 64 -
O

6 3 014 024 042 103 22.5 1.1721 24 1.218 1088

y (dB)

2.84

3.01

3.01

4.66

4.77

5.85

Ys = -2.17 dB

i

W

l

!

m

m

II!

w
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m
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m
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Table 22(c): Trellis Coded 4xl6PSK.

Reef = 3.25 bit/T, q=2, d2o = 0.586, Nu = 8 (4xl6PSK).

1 1

22

32

4!

5

6

2 N d 2
h 4 h a h 2 h I h ° Inv. dfree free next

u

- - 1 3 i22.5 0.609 8 0.890
O

- 3 1 5 22.5 0.890 16
O

- 06 02 11 22.5 1.172 24 1.195
O

2 - 02 06 11 !22.5 1.172 24 1.218
O

3 - 04 06 12 21 122.5 1.172 8 1.218
O

4 10 04 06 22 41 22.5 1.218 16
O

4 050 030 024 016 101 i22.5 1.499 72

1'8 = 0.35 dB

N 1' (dB)
next

32 0.17

- 1.82

64 3.01

64 3.01

32 3.01

- 3.18

- 4.08

w Table 22(d): Trellis Coded 4xl6PSK.

Reef = 3.00 bit/T, q=3, d2o = 0.586, Nu = 2 (lx8PSK).

2 d 2v _ h 3 h 2 h 1 h ° Inv. dfree Nfree next

1 1 24 1.218

2 2 8 1.218

3 3 16 -

4 3 48 -

5 3 24 -

3 64 -

6 3 050 024 006 103 22.5 2.0 8 2.343

- 1 3 45 ° 1.172
O

- 2 3 5 22.5 1.172
O

02 04 03 11 22.5 1.218
O

04 10 06 21 22.5 1.781
0

22 16 06 41 22.5 1.804
O

24 14 02 43 45 1.827
O

N y (dB)
nexl

64 3.01

32 3.01

3.18:

4.83

4.88

4.94

64 5.33

7s = 0dB
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Figure Headings

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

5:

6:

7(a):

7(b):
7(c):
8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

Signal set partitioning of 8PSK with natural mapping.

The 2xSPSK signal set.

Partitioning of the L = 2 binary vector space.

2xSPSK signal set mappers with (a) modulo-2 and (b) modulo-8

addition.
A three level 2x8PSK signal set partition.

Block diagram of a 2x2xSPSK signal set mapper.

3x8PSK signal set mapper (I).

3xSPSK signal set mapper (II).

3xSPSK signal set mapper (III).

4xSPSK signal set mapper.

General encoder system.

Differential encoders for the general encoder.

Systematic convolutional encoder with _: checked bits.

Encoder system for a rate 7/8 (2.33 bit/T), 3x8PSK (I) signal set

and 90 ° transparent code with 16 states and k" = 2.

The parallel transition decoding trellis for _ = [000] and the 2xSPSK

signal set.
The full parallel transition decoding trellis for the 2xSPSK signal set.

Dartboard decision boundaries for 8PSK (32 regions).

2 1.0, 2.0, and 3.0Plot of 10 logx0 d/_e, verses complexity/3 for Re/f =

bit/W.
2

Plot of 10 log10 d/_ verses complexity/3 for R_f.f = 1.5, 2.5, and 3.5

bit/T.
2

Plot of 10 log10 df_ verses complexity/3 for R_f/= 1.25, 1.33, 1.67,

1.75, 2.25, 2.33, 2.67, 2.75, 3.25, 3.33, 3.67, and 3.75, bit/T.
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1 Introduction

Demands for higher information rates (spectral efficiencies) in satellite com-

munications are such that this traditionally power limited channel _is now

considered t0 b-e bandlimited:as _weIl_.-_]s ]aaS made]algh speed sateillie

channels a natural candidate for the application of Trellis Coded Modulation

(TCM). Introduced by Vngerboeck [1],[_2], TCM achieves significant asymp-

totic coding gains relative to an uncoded system of the same information

rate with no bandwidth expansion. Due to the extensive use of nonlinear

amplifiers, such as traveling wave tubes, in satellite communications systems

only TCM schemes using MPSK signal constellations are appropriate. A

class of multidimensional (multi-D) MPSK trellis codes has been proposed

for use in NASA high speed satellite communication links [3]. These codes

have greater flexibility in achievable information rate, better rotational in-

variance properties, and higher speed decoder implementations than regular

two dimensional (2-D) Ungerboeck codes.

A typical satellite communication system consists of a Reed-Solomon(RS)

outer code, a symbol interleaver, and an inner code (Figure 1). The satellite

channel is usually well modeled by the zero mean Additive White Gaussian

Noise (AWGN) process with two sided power spectral density No�2. In one

mode of operation, the RS code and interleaver are bypassed and the in-

formation bits are directly encoded by the inner code and transmitted. In

this case, a bit error rate (BER) of ,,, 10 -s out of the inner decoder is con-

sidered reasonable. Under poor channel conditions or when extremely low

error rates are required, the entire concatenated coding system is used. For

a given (N,K) aS code over GF(2b) and assuming ideal interleaving, the

performance of the system is determined by the symbol error rate (SER) out
of the inner decoder, where the symbol size, b, is determined by the RS code.

Thus, the choice of the inner code is critical when designing such a system.

In this paper, the performance of multi-D MPSK trellis codes as the

inner code in a satellite communication system is studied through extensive

computer simulation. In Section 2, a brief review of the results in [3] is

presented in order to introduce muiti:D MPSK signal sets and the multi-D

encoder structure. In Section 3, the BER performance of multi-D MPSK

trellis codes on the AWGN channel with soft decision Viterbi decoding is

studied. This section includes an example of the calculation of the Zehavi and

Wolf transfer function bound and results on the minimum truncation length
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required for Viterbi decoding of MPSK trellis codes. Finally, the performance

of MPSK trellis codes in a concatenated coding system is studied in Section

4 through the use of computer simulation to obtain the SER out of the inner
decoder.

2 Multi-Dimensional Trellis Codes

The fundamental concept of 2-D TCM is that by trellis coding onto an ex-

panded signal set relative to that needed for uncoded transmission, a larger

free distance and an associated improvement in performance may be achieved

without bandwidth expansion or a reduction in information rate. In [1]

and [2], Ungerboeck considered the 2-D MPSK case where uncoded 2 TM PSK

was expanded into a rate m/(m + 1), 2 m+l PSK trellis code. In multi-D

MPSK TCM, the same principal is applied to a signal constellation, denoted

LxMPSK, constructed from the Cartesian product of L 2D-MPSK signal sets.

Each branch of the trellis is then labelled with an ordered sequence of L 2-D

signals and a 2L-dimensional signal is realized by transmitting a sequence

of L 2-D signals. The efficient labelling of trellis branches is accomplished

through a systematic binary set partitioning technique based on block codes

and their cosets.

The class of LxMPSK codes studied here has the same schematic encoder

diagram introduced by Forney et.al.[4] for Ungerboeck codes with one slight

modification. As shown in Figure 2, the multi-D encoder allows the q least

significant bits to be fixed, nominally to 0, during each coding interval. Thus,

whereas 2D-MPSK TCM allowed only rate m/m + 1 codes with information

rates (R) of 1.0, 2.0, and 3.0 bits per modulation interval(T) for QPSK,

8PSK, and 16PSK, respectively, multi-D MPSK allows the construction of

rate (Lxlog2(M-q- 1))/(Lxlog2M) codes with a variety of information

rates ranging from 1.0 bit/T to 3.75 bits/T.

As an example, consider the familiar 4-state Ungerboeck 8PSK code

shown in Figure 3 with information rate 2.0 bits/T. The fundamental trellis

structure of this code is determined by the rate 1/2 convolutional encoder

and is shown in Figure 4: During eaci_ c0d]ng _ntervall the trellis encoder

receives m = 2 information bits, of which rh = 1 are encoded by the rate

1/2 convo!utional encoder, and maps them to a single 8PSK signal. This

results in the trellis structure of Figure 4 with each transition replaced by



I

l

2 _-_ = 21 parallel transitions. The same rate 1/2 cg_vo!utj0nal encqder_-

can be used to construct a 2x-8]_SK Code with informati0n rate 2.5 bits/T.

In this case, the trellis encode r receives m = 5 information bits per coding

interval, of which the least significant bit is encoded by the convolutional

encoder. The m + 1 = 6 bits are then mapped to a single 2x8PSK signal.

This results in a rate 5/6__code with the trellis structure of Figure 4 where

each branch is replaced with 2 _''_ = 3 4 = 16 para_ei transitions and each

transition is labelled with a 2x8PSK signal. If the first q = 1 bits into the

trellis encoder are now set to 0, a rate 4/6, 2x8PSK code with information

rate 2 bits/T is obtained. This code has the trellis structure of Figure 4 with

2 4-1 ---- 8 parallel transitions and each transition is labelled with a 2x8PSK

signal from the left branch of the first level of the 2x8PSK binary partition

(see Pietrobon [3] et. _ii for a discussion of multi-D signal set partitioning).

It should be noted that, though this example illustrates the concept of these

LxMPSK trellis codes, the best LxMPSK codes will in genergl not have the

same convoiutionalenCoder_as a 2_D UngerbbeckZc0de.

[]
I

M

g

g

m
M

3 Code Performance and Simulation Results

Having introduced the basic concepts of LxMPSK trellis codes, it is now of

interest to investigate their performance, it is common practice to measure

the performance of trellis codes in terms of the asymptotic coding gain rela-

tive to an uncoded system with the same rate. In this case, the coding gain

is given by
2

7 = lOlog,o [ df_'rcu (1)
2

[ d freeuncoded.

The asymptotic coding gain, however' is accurate onlyas the SNR becomes

very large and does not provide much insight into a codes real coding gain

at a particular SNR or error rate. In order to determine real coding gains,

analytical bounds or simulations must be used.

For finear convolutional codes, the most common analytical method for

determining code performance is the transfer function bound. This method

uses a modified state diagram to enumerate the complete set of possible error

paths from the correct sequence. Inherent in this technique is the assumption

that considering the all zero sequence as the correct sequence entails no loss

of generality. For most TCM schemes, the mapping from code sequences to
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channel symbols is non-linear and the set of error paths is dependent on which

code sequence was sent. Thus, it is necessary to enumerate the set of all error

paths for each possible correct code sequence. This requires a state diagram

using 22_ States :and quickly becomes impractical[5]. Zehavi and Wolf [6]

have shown that for a large CIass Of trellis codes, including those discussed

in [1],[2], and [3], a transfer function upper bound on the average probability

of error can be calculated using a modified state diagram having only 2 _

states. As with convolutional codes, this procedure becomes intractable as

the number of state increases. For multi-D trellis codes, the Zehavi and Wolf

method becomes even more complex due to an exponential increase in the

number of error vectors whose distance profile from each possible code vector

must be enumerated. The calculation of the Zehavi and Wolf bound and its

computational difficulties is best manifest through an example.

Consider, the 8PSK, u = 2, Ungerboeck code introduced in Section 2

and shown in Figure 3. A necessary condition for the application of this

bound is that both subsets at the first level of the binary partition tree must

have the same distance profile with respect to a binary error vector E. In

this case, it is simple to check that the two subsets A={S0, $2, $4, $6} and

JA={S1,S3, Sb, ST} have the same profile for all 8 possible three bit error

vectors. For example, the error vector 011 has squared Eulcidean distances

{3.4142, 0.5858, 3.4142, 0.5858} from A and {0.5858, 3.4142, 0.5858, 3.4142}
from A. With this condition, the distance profile for each of the 8 error

vectors with respect to either subset can be determined as shown in Table

1. Note, that for a LxMPSK code this involves finding the distance profiles

of 2 Ll°g2(M) error vectors with respect to ML/2 signal points. From Table 1,

the distance polynomial of each error vector can be obtained as in Table 2,

where the power of W is the squared Euclidean distance and the coefficient

is the number of error paths with that distance. This information is used

to construct a modified state diagram that enumerates the multiplicity and

distance of all possible error paths.

The state diagram of the R=l/2 convolutional code used in this trellis

code is shown in Figure 5. The diagram of Figure 5 is transformed into

modified state diagram that enumerates all possible error paths by labelling

each branch with a polynomial consisting of terms of the form LiIJW _'

where i is the number of symbols, j is the number of nonzero informa-

tion bits, and a is the squared Euclidean distance. The key to labelling

the branches of the modified state diagram is to remember that each tran-

w
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sition in the convolutional encoder's state diagram represents a group of

parallel transti0ns for the trellis code. For example, when considering the

transiton from state 1 to state 3 in Figure 5 the polynomials of the error

vectors 011 and 111 must be taken into account yielding the polynomial

2LI(2W o.sssz9 + 2W 3"4142) + 2LI2(2W °.sss79 + 2W 3-4142) as the appropriate

label. Repeating this procedure for each branch gives the modified state

diagram of Figure 6. _ .......... ......

Regarding this as a signal flow graph, the transfer function is found to be

L414a2fl 2 + L312a2"_(1- L"/) (2)
T(W, L, I) = 4LIW a + 1 - L312132_5 - L_-y6 - L'y + L3-y26

where a = 4(1 + 1)W 2,/_ = 2(I + 1)(W °'ss579 + W3"4'42), _/= 4(W °'hshT9 +

IW3"4142), and 6 = 4(1 + IW4). Using this transfer function, Zehavi and

Wolf show that the bit error rat 9 fo r a trellis code with:maximum likelihood

decoding (MLD)is upper bounded by

¢

OT(W,L,I)

(3)
where d_ is the normalized Squared fr_: Euc_!idean distance of th¢code. The
Zehavi and Wolf bound and corresponding simulation results are plotted in

Figures 7 and 8 for the Ungerboeck code discussed above and a 2x8PSK,

R=2.5 bits/T, 4-D code from [3], respectively. As expected, the bound and

the simulation results conform closely except at low SNR's where the union

bound becomes relatively loose. This of practical interest since many satellite

communications systems operate at ]0w_s End concatenaied systems are

sensitive to small deviations in the performance of the inner code.

Simulation results for these codes were obtained via a stochastic or Monte

Carlo simulation of a soft decision MLD Viterbi decoder. This involves sim-

ulating the AWGN channel with a computer generated pseudo-random num-

ber generator that approximates the Gaussian distribution. The Marsaglia-

Bray[7] method was Usedio_mplement the Gaussianrandom number gener-

ator from the available uniform random number generators. Because trellis

codes are non-linear, a number of nonzero information sequences are con-::

sidered in each Simulation and the: code performance is determined as the

average over these sequences.
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Figure 9 shows the simulation results for a group of v = 2, LxSPSK
2

trellis codes with information rate 2.0 bits/T and dfr,, - 4.0. These codes

show a coding gain from 2.0dB to 2.4dB at ,-_ 10 -s compared to uncoded

QPSK. The 4, 6, and 8 dimensional codes suffer a 0.2dB to 0.4dB loss in

performance compared to the Ungerboeck 8PSK code due to higher path

multiplicities and denser distance spectra. For example, the 4x8PSK code

has a multiplicity Nit** = 12 of the minimum free distance path (d_, = 4.0)

and a second spectral line at d_ = 4.686 with multiplicity N2 = 32. On the

other hand, it is possible to implement a 4x8PSK decoder at 4 times the speed

of the Ungerboeck code by using read only memories (ROM's) to decode

the parallel transitions. Analagous simulation results were obtained for the

multi-D Lx4PSK codes with information rate 1 bit/T and the Lxl6PSK

codes with information rate 3 bits/T. Figure 10 shows simulation results for

v = 4 and v = 6, R = 2.67 bits/T, 3x8PSK codes compared to a v = 4 8PSK

periodically time varying trellis code (PTVTC) [8] of the same effective rate.

The 3xSPSK trellis codes show an improvement of 0.5 dB for v = 4 and

1.0 dB for v = 6 and are capable of a decoder implementation that would

operate at three times the speed of the PTVTC decoder. Simulation results

for a number of the codes given in [3] are contained in Appendix I .

The ideal Viterbi decoder retains the surviving path into each encoder

state and waits until the end of the current code sequence before decoding

any information bits. In actual implementations, finite memory limitations

allow the decoder to retain only the past r branches of information bits for

each state. The effect of this constraint, called the truncation length of the

decoder, is that additional decoding errors are introduced other than those

that would occur in an ideal MLD Viterbi decoder. For a particular code,

the minimum truncation length is the minimum value of r for which the per-

formance of the truncated Viterbi decoder will asymptotically approach that

of the ideal MLD decoder. In [9] the Zehavi and Wolf bound is modified to

account for the truncation length of the Viterbi decoder. Using the modified

bound, the performance of a code for a particular r can be calculated as well

as the minimum truncation length required for asymptotically ML perfor-

mance. In Figure 11, the modified bound and simulation results are plotted

for varying r for the R=2 bits/T, v = 2, 8PSK Ungerboeck code. Figure

12 shows the truncation length simulation results for the 3x8PSK, R=2.33

bits/T, v = 4 code currently being implemented. In [9], the minimum trun-

cation length of this code was calculated to be 11 branches.

7
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4 Concatenated Coding and LxMPSK Codes

Many satellite communications links use concatenated coding in order to

achieve extremely low BER's over noisy channels with reasonable code com-

plexity. The class of Reed-Solomon (RS) block codes are often chosen as the

outer code in these systems due to their optimal distance properties, high

rates, and the availability of relatively simple decoding algorithms. Addi-

tionally, an interleaver is usually placed between the inner and outer code

to ensure that errors in the RS symbols are independent. For a concate-

nated coding system using a t-error-correcting (N,K) RS outer code and

ideal interleaving, the overall bit error rate is well approximated by

2t + l _ ( N ) pis(l _ ps)N_ _ (4)Pb-- N i
i=t+l

where ps is the RS symbol error rate out of the inner decoder. Computer

simulation is necessary to get an accurate measure of p, for a given inner

code.

When using convolutional inner codes, it was shown in [10] that choosing

an RS code over GF(2 b) matched to a byte oriented inner convolutional codes

of rate k/b resulted in an improvement in the overall sytem BER by nearly

an order of magnitude compared to unmatched inner codes of the same rate,

Costello and Deng[ll] have suggested that when using multi-D LxMPSK

inner codes and RS outer codes similar results might apply. In Figure 13,

the BER and symbol error rate (SER) for a v = 2, R = 2.0 bits/T, 4x8PSK

code and the comparable 2-D Ungerboeck code are shown for a symbol size

of 8 bits, i.e. the RS code is over OS(2S)[ T-h_-_esuits indicatethat t-he BER

penalty of 0.2dB to 0.4dB that multi-D codes suffer compared to 2D codes, as

noted above, disappears when SER is considered. Figure 14 shows the SER

simui_tion results for the3x_K' V = 4, R= 2.33 bits]T Code currently

being implemented versus an uncoded 3x8PSK system with the same rate.

Thus, the multi-D codes appear to be better suited for concatenated coding

than the 2-D codes.
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5 Conclusion

The performance of a class of multi-D LxMPSK codes was studied through

extensive computer simulation. When compared to 2D Ungerboeck codes

with the same information rate, the multi-dimensional codes performed slightly

worse clue to their high path multiplicities and dense spectra. Additionally,

they have a higher trellis complexity due to the larger number of parallel

transitions. However, these codes have better rotationa_ invariance proper-

ties and are capable of achieving much higher decoder speeds. Furthermore,

multi-D LxMPSK codes can be constructed using rates not possible with

conventional 2D-MPSK codes. It was also shown that the byte oriented

structure of the multi-D codes compensated for the slight loss in BER so

that a concatenated system with the proper RS outer code would perform

equally as well as a 2D code.
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Table 1: Distance profile for the 8-PSK, v = 2 Ungerboeck code.

C=(C2C1C °) E=(E2E1E °) d2(M(C);M(E+C))
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Table 2: Branch Weights for the 8-PSK, v = 2, Ungerboeck code.

E = (E2EtE °) Weight Profile

000 4
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010 4W 2
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111 2W °'585T9+ 2W 3"4142
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Figure 1: Block Diagram of a Typical Satellite Communications System
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Figure 3: Encoder for the 4 State, 8PSK, R=2/3 Ungerboeck Code J
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Figure 5: State Diagram for the Convolutional Code of Figure 3.
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Figure 6: Modified State Diagram for the Trellis Code of Figure 3.
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7 Appendix I

This appendix contains the simulation results for a number of LxMPSK trellis

codes. All table numbers refer to reference [3].
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